These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27532504)

  • 1. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae.
    da Silva Costa M; de Paula SO; Martins GF; Zanuncio JC; Santana AE; Serrão JE
    PLoS One; 2016; 11(8):e0160928. PubMed ID: 27532504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Larvicidal and cytotoxic potential of squamocin on the midgut of Aedes aegypti (Diptera: Culicidae).
    Costa MS; Cossolin JF; Pereira MJ; Sant'Ana AE; Lima MD; Zanuncio JC; Serrão JE
    Toxins (Basel); 2014 Mar; 6(4):1169-76. PubMed ID: 24674934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells.
    Costa MS; Santana AE; Oliveira LL; Zanuncio JC; Serrão JE
    Pest Manag Sci; 2017 Mar; 73(3):636-640. PubMed ID: 27366879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae).
    Fiaz M; Martínez LC; Costa MDS; Cossolin JFS; Plata-Rueda A; Gonçalves WG; Sant'Ana AEG; Zanuncio JC; Serrão JE
    Ecotoxicol Environ Saf; 2018 Jul; 156():1-8. PubMed ID: 29524778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel histopathological and molecular effects of natural compound pellitorine on larval midgut epithelium and anal gills of Aedes aegypti.
    Perumalsamy H; Kim JR; Oh SM; Jung JW; Ahn YJ; Kwon HW
    PLoS One; 2013; 8(11):e80226. PubMed ID: 24260359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistance to commonly used insecticides and underlying mechanisms of resistance in Aedes aegypti (L.) from Sri Lanka.
    Fernando HSD; Saavedra-Rodriguez K; Perera R; Black WC; De Silva BGDNK
    Parasit Vectors; 2020 Aug; 13(1):407. PubMed ID: 32778147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).
    Fernandes KM; Gonzaga WG; Pascini TV; Miranda FR; Tomé HV; Serrão JE; Martins GF
    Med Vet Entomol; 2015 Sep; 29(3):245-54. PubMed ID: 25968596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The action of phytobacteriomycin on the ultrastructure of the epithelial cells in the midgut of the mosquito Aedes aegypti L].
    Chunina LM; Chernov IuV
    Med Parazitol (Mosk); 1992; (4):26-30. PubMed ID: 1331734
    [No Abstract]   [Full Text] [Related]  

  • 10. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies).
    Marcombe S; Poupardin R; Darriet F; Reynaud S; Bonnet J; Strode C; Brengues C; Yébakima A; Ranson H; Corbel V; David JP
    BMC Genomics; 2009 Oct; 10():494. PubMed ID: 19857255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imidazolium salt's toxic effects in larvae and cells of Aedes aegypti and Aedes albopictus (Diptera: Culicidae).
    da Silva WJ; Diel LF; Pilz-Júnior HL; de Lemos AB; de Freitas Milagres T; Pereira ILG; Bernardi L; Ribeiro BM; Lamers ML; Schrekker HS; da Silva OS
    Sci Rep; 2024 Jul; 14(1):15421. PubMed ID: 38965297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis.
    Canton PE; Cancino-Rodezno A; Gill SS; Soberón M; Bravo A
    BMC Genomics; 2015 Dec; 16():1042. PubMed ID: 26645277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral and ultrastructural effects of novaluron on Aedes aegypti larvae.
    Fiaz M; Martínez LC; Plata-Rueda A; Cossolin JFS; Serra RS; Martins GF; Serrão JE
    Infect Genet Evol; 2021 Sep; 93():104974. PubMed ID: 34166815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Photoactivated Toxicity of 2-Thiophenylfuranocoumarin Induce Midgut Damage and Apoptosis in
    Wu J; Wang L; Zhang Y; Zhang S; Ahmad S; Luo Y
    J Agric Food Chem; 2021 Jan; 69(3):1091-1106. PubMed ID: 33432806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Squamocin, an annonaceous acetogenin, enhances naphthalene degradation mediated by Bacillus atrophaeus CN4.
    Parellada EA; Igarza M; Isacc P; Bardón A; Ferrero M; Ameta KL; Neske A
    Rev Argent Microbiol; 2017; 49(3):282-288. PubMed ID: 28554707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.
    Bisset JA; Marín R; Rodríguez MM; Severson DW; Ricardo Y; French L; Díaz M; Pérez O
    J Med Entomol; 2013 Mar; 50(2):352-61. PubMed ID: 23540124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ammonia transport in the excretory system of mosquito larvae (Aedes aegypti): Rh protein expression and the transcriptome of the rectum.
    Durant AC; Donini A
    Comp Biochem Physiol A Mol Integr Physiol; 2024 Aug; 294():111649. PubMed ID: 38670480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody to H(+) V-ATPase subunit E colocalizes with portasomes in alkaline larval midgut of a freshwater mosquito (Aedes aegypti).
    Zhuang Z; Linser PJ; Harvey WR
    J Exp Biol; 1999 Sep; 202(Pt 18):2449-60. PubMed ID: 10460732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of rearing salinity on expression and function of ion-motive ATPases and ion transport across the gastric caecum of
    D'Silva NM; Patrick ML; O'Donnell MJ
    J Exp Biol; 2017 Sep; 220(Pt 17):3172-3180. PubMed ID: 28659305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulatory effects of squamocin, an Annonaceous acetogenin, on Ca(2+)-activated K+ current in cultured smooth muscle cells of human coronary artery.
    Wu SN; Chiang HT; Chang FR; Liaw CC; Wu YC
    Chem Res Toxicol; 2003 Jan; 16(1):15-22. PubMed ID: 12693026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.