These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 27532611)
1. Predicting the Occurrence of Cave-Inhabiting Fauna Based on Features of the Earth Surface Environment. Christman MC; Doctor DH; Niemiller ML; Weary DJ; Young JA; Zigler KS; Culver DC PLoS One; 2016; 11(8):e0160408. PubMed ID: 27532611 [TBL] [Abstract][Full Text] [Related]
2. Cave conservation priority index to adopt a rapid protection strategy: a case study in Brazilian Atlantic rain forest. Souza Silva M; Martins RP; Ferreira RL Environ Manage; 2015 Feb; 55(2):279-95. PubMed ID: 25528593 [TBL] [Abstract][Full Text] [Related]
3. Out of sight out of mind: current knowledge of Chinese cave fishes. Zhao YH; Gozlan RE; Zhang CG J Fish Biol; 2011 Dec; 79(6):1545-62. PubMed ID: 22136239 [TBL] [Abstract][Full Text] [Related]
4. Using environmental DNA methods to survey for rare groundwater fauna: Detection of an endangered endemic cave crayfish in northern Alabama. Boyd SH; Niemiller KDK; Dooley KE; Nix J; Niemiller ML PLoS One; 2020; 15(12):e0242741. PubMed ID: 33301442 [TBL] [Abstract][Full Text] [Related]
5. Cave features, seasonality and subterranean distribution of non-obligate cave dwellers. Lunghi E; Manenti R; Ficetola GF PeerJ; 2017; 5():e3169. PubMed ID: 28503370 [TBL] [Abstract][Full Text] [Related]
7. Population genomics in two cave-obligate invertebrates confirms extremely limited dispersal between caves. Balogh A; Ngo L; Zigler KS; Dixon G Sci Rep; 2020 Oct; 10(1):17554. PubMed ID: 33067497 [TBL] [Abstract][Full Text] [Related]
8. Natural and human impacts on invertebrate communities in Brazilian caves. Ferreira RL; Horta LC Braz J Biol; 2001 Feb; 61(1):7-17. PubMed ID: 11340457 [TBL] [Abstract][Full Text] [Related]
9. Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders. Bendik NF; Meik JM; Gluesenkamp AG; Roelke CE; Chippindale PT BMC Evol Biol; 2013 Sep; 13():201. PubMed ID: 24044519 [TBL] [Abstract][Full Text] [Related]
10. Reconciling Mining with the Conservation of Cave Biodiversity: A Quantitative Baseline to Help Establish Conservation Priorities. Jaffé R; Prous X; Zampaulo R; Giannini TC; Imperatriz-Fonseca VL; Maurity C; Oliveira G; Brandi IV; Siqueira JO PLoS One; 2016; 11(12):e0168348. PubMed ID: 27997576 [TBL] [Abstract][Full Text] [Related]
11. Mapping global conservation priorities and habitat vulnerabilities for cave-dwelling bats in a changing world. Tanalgo KC; Oliveira HFM; Hughes AC Sci Total Environ; 2022 Oct; 843():156909. PubMed ID: 35753458 [TBL] [Abstract][Full Text] [Related]
12. Environmental DNA of insects and springtails from caves reveals complex processes of eDNA transfer in soils. Lunghi E; Valle B; Guerrieri A; Bonin A; Cianferoni F; Manenti R; Ficetola GF Sci Total Environ; 2022 Jun; 826():154022. PubMed ID: 35202680 [TBL] [Abstract][Full Text] [Related]
13. Extending beyond individual caves: a graph theory approach broadening conservation priorities in Amazon iron ore caves. Oliveira MPA; Ferreira RL PeerJ; 2024; 12():e16877. PubMed ID: 38313035 [TBL] [Abstract][Full Text] [Related]
14. Biodiversity of a temperate karst landscape-ice cave collapse doline supports high α-diversity of the soil mesofauna. Petrovová V; Ľuptáčik P; Kolarčik V; Kováč Ľ Sci Rep; 2024 Sep; 14(1):22205. PubMed ID: 39333176 [TBL] [Abstract][Full Text] [Related]
15. A GIS-based methodology to quantitatively define an Adjacent Protected Area in a shallow karst cavity: the case of Altamira cave. Elez J; Cuezva S; Fernandez-Cortes A; Garcia-Anton E; Benavente D; Cañaveras JC; Sanchez-Moral S J Environ Manage; 2013 Mar; 118():122-34. PubMed ID: 23426031 [TBL] [Abstract][Full Text] [Related]
16. Local- versus broad-scale environmental drivers of continental Mammola S; Cardoso P; Angyal D; Balázs G; Blick T; Brustel H; Carter J; Ćurčić S; Danflous S; Dányi L; Déjean S; Deltshev C; Elverici M; Fernández J; Gasparo F; Komnenov M; Komposch C; Kováč L; Kunt KB; Mock A; Moldovan OT; Naumova M; Pavlek M; Prieto CE; Ribera C; Rozwałka R; Růžička V; Vargovitsh RS; Zaenker S; Isaia M Proc Biol Sci; 2019 Nov; 286(1914):20191579. PubMed ID: 31662080 [TBL] [Abstract][Full Text] [Related]
17. Conserving relics from ancient underground worlds: assessing the influence of cave and landscape features on obligate iron cave dwellers from the Eastern Amazon. Jaffé R; Prous X; Calux A; Gastauer M; Nicacio G; Zampaulo R; Souza-Filho PWM; Oliveira G; Brandi IV; Siqueira JO PeerJ; 2018; 6():e4531. PubMed ID: 29576987 [TBL] [Abstract][Full Text] [Related]
18. A Minimal Invasive Method to Forecast the Effects of Anthropogenic Disturbance on Tropical Cave Beetle Communities. Cajaiba RL; Cabral JA; Santos M Neotrop Entomol; 2016 Apr; 45(2):139-47. PubMed ID: 26590143 [TBL] [Abstract][Full Text] [Related]
19. Up high and down low: Molecular systematics and insight into the diversification of the ground beetle genus Rhadine LeConte. Gómez RA; Reddell J; Will K; Moore W Mol Phylogenet Evol; 2016 May; 98():161-75. PubMed ID: 26879711 [TBL] [Abstract][Full Text] [Related]
20. Lithology and disturbance drive cavefish and cave crayfish occurrence in the Ozark Highlands ecoregion. Mouser JB; Brewer SK; Niemiller ML; Mollenhauer R; Van Den Bussche RA Sci Rep; 2022 Nov; 12(1):19559. PubMed ID: 36379975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]