These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 27532632)
21. Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges. Downes S; Mahon R; Olsen K J Invertebr Pathol; 2007 Jul; 95(3):208-13. PubMed ID: 17470372 [TBL] [Abstract][Full Text] [Related]
22. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. Gujar GT; Kalia V; Kumari A; Singh BP; Mittal A; Nair R; Mohan M J Invertebr Pathol; 2007 Jul; 95(3):214-9. PubMed ID: 17475275 [TBL] [Abstract][Full Text] [Related]
23. Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm. Chen WB; Lu GQ; Cheng HM; Liu CX; Xiao YT; Xu C; Shen ZC; Soberón M; Bravo A; Wu KM Transgenic Res; 2017 Dec; 26(6):763-774. PubMed ID: 29143178 [TBL] [Abstract][Full Text] [Related]
24. Frequency of Bt resistance alleles in Helicoverpa armigera in the Xinjiang cotton-planting region of China. Li G; Feng H; Gao Y; Wyckhuys KA; Wu K Environ Entomol; 2010 Oct; 39(5):1698-704. PubMed ID: 22546469 [TBL] [Abstract][Full Text] [Related]
25. Chloroplast-targeted expression of recombinant crystal-protein gene in cotton: an unconventional combat with resistant pests. Kiani S; Mohamed BB; Shehzad K; Jamal A; Shahid MN; Shahid AA; Husnain T J Biotechnol; 2013 Jul; 166(3):88-96. PubMed ID: 23643479 [TBL] [Abstract][Full Text] [Related]
26. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Anilkumar KJ; Rodrigo-Simón A; Ferré J; Pusztai-Carey M; Sivasupramaniam S; Moar WJ Appl Environ Microbiol; 2008 Jan; 74(2):462-9. PubMed ID: 18024681 [TBL] [Abstract][Full Text] [Related]
27. Cross-crop resistance of Spodoptera frugiperda selected on Bt maize to genetically-modified soybean expressing Cry1Ac and Cry1F proteins in Brazil. Machado EP; Dos S Rodrigues Junior GL; Führ FM; Zago SL; Marques LH; Santos AC; Nowatzki T; Dahmer ML; Omoto C; Bernardi O Sci Rep; 2020 Jun; 10(1):10080. PubMed ID: 32572133 [TBL] [Abstract][Full Text] [Related]
28. Variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins. Bird LJ; Akhurst RJ J Invertebr Pathol; 2007 Feb; 94(2):84-94. PubMed ID: 17049552 [TBL] [Abstract][Full Text] [Related]
29. Death-Associated LIM-Only Protein Reduces Cry1Ac Toxicity by Sequestration of Cry1Ac Protoxin and Activated Toxin in Duan Y; Yao X; Li P; Zhao Y; Zhang B; An S; Wei J; Li X J Agric Food Chem; 2024 Aug; 72(33):18708-18719. PubMed ID: 39106049 [TBL] [Abstract][Full Text] [Related]
30. piggyBac-based transgenic Helicoverpa armigera expressing the T92C allele of the tetraspanin gene HaTSPAN1 confers dominant resistance to Bacillus thuringiensis toxin Cry1Ac. Li L; Pang X; Wang C; Yang Y; Wu Y Pestic Biochem Physiol; 2024 Sep; 204():106096. PubMed ID: 39277420 [TBL] [Abstract][Full Text] [Related]
31. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac. Paramasiva I; Shouche Y; Kulkarni GJ; Krishnayya PV; Akbar SM; Sharma HC Arch Insect Biochem Physiol; 2014 Dec; 87(4):201-13. PubMed ID: 25195523 [TBL] [Abstract][Full Text] [Related]
32. Baseline susceptibility to Cry1Ac insecticidal protein in Heliothis virescens (Lepidoptera: Noctuidae) populations in Brazil. Albernaz KC; Merlin BL; Martinelli S; Head GP; Omoto C J Econ Entomol; 2013 Aug; 106(4):1819-24. PubMed ID: 24020298 [TBL] [Abstract][Full Text] [Related]
34. Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton planting. Gao YL; Feng HQ; Wu KM Transgenic Res; 2010 Aug; 19(4):557-62. PubMed ID: 19847665 [TBL] [Abstract][Full Text] [Related]
35. Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. Yang Y; Chen H; Wu Y; Yang Y; Wu S Appl Environ Microbiol; 2007 Nov; 73(21):6939-44. PubMed ID: 17827322 [TBL] [Abstract][Full Text] [Related]
36. Responses to Bt toxin Vip3Aa by pink bollworm larvae resistant or susceptible to Cry toxins. Tabashnik BE; Unnithan GC; Yelich AJ; Fabrick JA; Dennehy TJ; Carrière Y Pest Manag Sci; 2022 Oct; 78(10):3973-3979. PubMed ID: 35633103 [TBL] [Abstract][Full Text] [Related]
37. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn. Dively GP; Venugopal PD; Finkenbinder C PLoS One; 2016; 11(12):e0169115. PubMed ID: 28036388 [TBL] [Abstract][Full Text] [Related]
38. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton. Luo JY; Zhang S; Peng J; Zhu XZ; Lv LM; Wang CY; Li CH; Zhou ZG; Cui JJ PLoS One; 2017; 12(1):e0170379. PubMed ID: 28099508 [TBL] [Abstract][Full Text] [Related]
39. Toxicity and characterization of cotton expressing Bacillus thuringiensis Cry1Ac and Cry2Ab2 proteins for control of lepidopteran pests. Sivasupramaniam S; Moar WJ; Ruschke LG; Osborn JA; Jiang C; Sebaugh JL; Brown GR; Shappley ZW; Oppenhuizen ME; Mullins JW; Greenplate JT J Econ Entomol; 2008 Apr; 101(2):546-54. PubMed ID: 18459423 [TBL] [Abstract][Full Text] [Related]
40. Baseline Susceptibility of Field Populations of Helicoverpa armigera to Bacillus thuringiensis Vip3Aa Toxin and Lack of Cross-Resistance between Vip3Aa and Cry Toxins. Wei Y; Wu S; Yang Y; Wu Y Toxins (Basel); 2017 Apr; 9(4):. PubMed ID: 28379206 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]