BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27532776)

  • 1. Efficiency evaluation of the membrane/AOPs for paper mill wastewater treatment.
    Gholami M; Abbasi Souraki B; Pendashteh A; Bagherian Marzouni M
    Environ Technol; 2017 May; 38(9):1127-1138. PubMed ID: 27532776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater.
    Manenti DR; Soares PA; Silva TF; Módenes AN; Espinoza-Quiñones FR; Bergamasco R; Boaventura RA; Vilar VJ
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):833-45. PubMed ID: 24737016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical oxygen demand and tannin/lignin removal from paper mill wastewater by electrocoagulation combined with peroxide and hypochlorite treatments.
    Caglak A; Sari-Erkan H; Onkal Engin G
    Environ Technol; 2024 Jun; 45(15):3076-3094. PubMed ID: 37105959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes.
    Kiliç MY; Yonar T; Kestioğlu K
    Environ Technol; 2013; 34(9-12):1521-31. PubMed ID: 24191487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.
    Zhang Z
    Water Sci Technol; 2017 Dec; 76(11-12):3278-3288. PubMed ID: 29236007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative treatment of olive mill wastewater by combined sulfate radical-based advanced electrocoagulation processes.
    Yazici Guvenc S; Tunc S
    Water Environ Res; 2023 Dec; 95(12):e10951. PubMed ID: 38031510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of COD Removal from Oilfield Produced Wastewater by Combination of Advanced Oxidation, Adsorption and Ultrafiltration.
    Dai X; Fang J; Li L; Dong Y; Zhang J
    Int J Environ Res Public Health; 2019 Sep; 16(17):. PubMed ID: 31484407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced treatment of effluents from an industrial park wastewater treatment plant by ferrous ion activated persulfate oxidation process.
    Zhu S; Zhou Z; Jiang H; Ye J; Ren J; Gu L; Wang L
    Water Sci Technol; 2016; 74(2):535-41. PubMed ID: 27438260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO(2) as photocatalyst.
    Uğurlu M; Karaoğlu MH
    Environ Sci Pollut Res Int; 2009 May; 16(3):265-73. PubMed ID: 18839234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic olive mill wastewater treatment by Fenton's process in batch and continuous reactors operation.
    Esteves BM; Rodrigues CSD; Madeira LM
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):34826-34838. PubMed ID: 29101704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of steel slags in the heterogeneous Fenton process for decreasing the chemical oxygen demand of oil refinery wastewater.
    Heidari B; Soleimani M; Mirghaffari N
    Water Sci Technol; 2018 Oct; 78(5-6):1159-1167. PubMed ID: 30339540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.
    Ramteke LP; Gogate PR
    Environ Sci Pollut Res Int; 2016 May; 23(10):9712-29. PubMed ID: 26846248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of dairy wastewater by two-stage membrane operation with ultrafiltration and nanofiltration.
    Gong YW; Zhang HX; Cheng XN
    Water Sci Technol; 2012; 65(5):915-9. PubMed ID: 22339027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of pre-treatment methods on membrane flux, COD, and total phenol removal efficiencies for membrane treatment of pistachio wastewater.
    Ozay Y; Dizge N
    J Environ Manage; 2022 May; 310():114762. PubMed ID: 35220102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decolourization and removal of some organic compounds from olive mill wastewater by advanced oxidation processes and lime treatment.
    Uğurlu M; Kula I
    Environ Sci Pollut Res Int; 2007 Jul; 14(5):319-25. PubMed ID: 17722766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-Fenton process for implementation of acid black liquor waste treatment.
    Buftia G; Rosales E; Pazos M; Lazar G; Sanromán MA
    Sci Total Environ; 2018 Sep; 635():397-404. PubMed ID: 29674263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fenton process for the treatment of wastewater effluent from the edible oil industry.
    Ayoub M
    Water Sci Technol; 2022 Sep; 86(6):1388-1401. PubMed ID: 36178813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment.
    GilPavas E; Dobrosz-Gómez I; Gómez-García MÁ
    J Environ Manage; 2017 Apr; 191():189-197. PubMed ID: 28092755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes.
    Marcinowski PP; Bogacki JP; Naumczyk JH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(13):1531-41. PubMed ID: 25137541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of refractory organic compounds from dinitrodiazophenol containing industrial wastewater through UV/H
    Ran G; Li Q
    Environ Sci Pollut Res Int; 2020 Feb; 27(6):6042-6051. PubMed ID: 31865565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.