These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 27532819)

  • 1. Self-Cloning CRISPR.
    Arbab M; Sherwood RI
    Curr Protoc Stem Cell Biol; 2016 Aug; 38():5B.5.1-5B.5.16. PubMed ID: 27532819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning-free CRISPR.
    Arbab M; Srinivasan S; Hashimoto T; Geijsen N; Sherwood RI
    Stem Cell Reports; 2015 Nov; 5(5):908-917. PubMed ID: 26527385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids.
    Sakuma T; Takenaga M; Kawabe Y; Nakamura T; Kamihira M; Yamamoto T
    Int J Mol Sci; 2015 Oct; 16(10):23849-66. PubMed ID: 26473830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9-Guided Genome Engineering in C. elegans.
    Kim HM; Colaiácovo MP
    Curr Protoc Mol Biol; 2016 Jul; 115():31.7.1-31.7.18. PubMed ID: 27366893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
    He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B
    Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Generation of Large-Fragment Knock-In Mouse Models Using 2-Cell (2C)-Homologous Recombination (HR)-CRISPR.
    Gu B; Posfai E; Gertsenstein M; Rossant J
    Curr Protoc Mouse Biol; 2020 Mar; 10(1):e67. PubMed ID: 31912993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 Technology in Translational Biomedicine.
    Leonova EI; Gainetdinov RR
    Cell Physiol Biochem; 2020 Apr; 54(3):354-370. PubMed ID: 32298553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loci.
    Chylinski K; Hubmann M; Hanna RE; Yanchus C; Michlits G; Uijttewaal ECH; Doench J; Schramek D; Elling U
    Nat Commun; 2019 Nov; 10(1):5454. PubMed ID: 31784531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci.
    Najah S; Saulnier C; Pernodet JL; Bury-Moné S
    BMC Biotechnol; 2019 Mar; 19(1):18. PubMed ID: 30894153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.
    Schwartz C; Frogue K; Ramesh A; Misa J; Wheeldon I
    Biotechnol Bioeng; 2017 Dec; 114(12):2896-2906. PubMed ID: 28832943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes.
    Owen JR; Hennig SL; McNabb BR; Mansour TA; Smith JM; Lin JC; Young AE; Trott JF; Murray JD; Delany ME; Ross PJ; Van Eenennaam AL
    BMC Genomics; 2021 Feb; 22(1):118. PubMed ID: 33581720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 15. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system.
    Katoh Y; Michisaka S; Nozaki S; Funabashi T; Hirano T; Takei R; Nakayama K
    Mol Biol Cell; 2017 Apr; 28(7):898-906. PubMed ID: 28179459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [CRISPR/CAS9, the King of Genome Editing Tools].
    Bannikov AV; Lavrov AV
    Mol Biol (Mosk); 2017; 51(4):582-594. PubMed ID: 28900076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes.
    Bosch JA; Knight S; Kanca O; Zirin J; Yang-Zhou D; Hu Y; Rodiger J; Amador G; Bellen HJ; Perrimon N; Mohr SE
    Curr Protoc Mol Biol; 2020 Mar; 130(1):e112. PubMed ID: 31869524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finally, Archaea Get Their CRISPR-Cas Toolbox.
    Gophna U; Allers T; Marchfelder A
    Trends Microbiol; 2017 Jun; 25(6):430-432. PubMed ID: 28391963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatic Liver Knockout (SLiK): A Quick and Efficient Way to Generate Liver-Specific Knockout Mice Using Multiplex CRISPR/Cas9 Gene Editing.
    Johnson CG; Chen T; Furey N; Hemmingsen MG; Bissig KD
    Curr Protoc Mol Biol; 2020 Mar; 130(1):e117. PubMed ID: 32150344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination.
    Peng H; Le C; Wu J; Li XF; Zhang H; Le XC
    ACS Nano; 2020 Mar; 14(3):2817-2826. PubMed ID: 32048826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.