These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27532882)

  • 1. Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation.
    Yoon K; Rahnamoun A; Swett JL; Iberi V; Cullen DA; Vlassiouk IV; Belianinov A; Jesse S; Sang X; Ovchinnikova OS; Rondinone AJ; Unocic RR; van Duin AC
    ACS Nano; 2016 Sep; 10(9):8376-84. PubMed ID: 27532882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial carbon nanoplatelet formation by ion irradiation of graphene on iridium(111).
    Herbig C; Ã…hlgren EH; Jolie W; Busse C; Kotakoski J; Krasheninnikov AV; Michely T
    ACS Nano; 2014 Dec; 8(12):12208-18. PubMed ID: 25486329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton irradiation of graphene: insights from atomistic modeling.
    Shi T; Peng Q; Bai Z; Gao F; Jovanovic I
    Nanoscale; 2019 Nov; 11(43):20754-20765. PubMed ID: 31651014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous strength characteristics of Stone-Thrower-Wales defects in graphene sheets - a molecular dynamics study.
    Juneja A; Rajasekaran G
    Phys Chem Chem Phys; 2018 Jun; 20(22):15203-15215. PubMed ID: 29789830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Different Ion Irradiation on the Contact Resistance of Pd/Graphene Contacts.
    Shahzad K; Jia K; Zhao C; Wang D; Usman M; Luo J
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31783612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect dynamics in two-dimensional black phosphorus under argon ion irradiation.
    Gupta S; Periasamy P; Narayanan B
    Nanoscale; 2021 May; 13(18):8575-8590. PubMed ID: 33912891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the defect formation in supported graphene by energetic heavy ion irradiation: the substrate effect.
    Li W; Wang X; Zhang X; Zhao S; Duan H; Xue J
    Sci Rep; 2015 Apr; 5():9935. PubMed ID: 25927476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the Nucleation and Growth Orientation of Nanocrystalline Carbon Films during Plasma-Assisted Deposition: A Reactive Molecular Dynamics/Monte Carlo Study.
    Zhang D; Peng L; Li X; Yi P; Lai X
    J Am Chem Soc; 2020 Feb; 142(5):2617-2627. PubMed ID: 31922416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene.
    Verma A; Parashar A
    Phys Chem Chem Phys; 2017 Jun; 19(24):16023-16037. PubMed ID: 28594005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic Simulations of Defect Production in Monolayer and Bulk Hexagonal Boron Nitride under Low- and High-Fluence Ion Irradiation.
    Ghaderzadeh S; Kretschmer S; Ghorbani-Asl M; Hlawacek G; Krasheninnikov AV
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherence in defect evolution data for the ion beam irradiated graphene.
    Yeo S; Han J; Bae S; Lee DS
    Sci Rep; 2018 Sep; 8(1):13973. PubMed ID: 30228358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation.
    Buchheim J; Wyss RM; Shorubalko I; Park HG
    Nanoscale; 2016 Apr; 8(15):8345-54. PubMed ID: 27043304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tight-binding calculation studies of vacancy and adatom defects in graphene.
    Zhang W; Lu WC; Zhang HX; Ho KM; Wang CZ
    J Phys Condens Matter; 2016 Mar; 28(11):115001. PubMed ID: 26902952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties.
    Nebogatikova NA; Antonova IV; Erohin SV; Kvashnin DG; Olejniczak A; Volodin VA; Skuratov AV; Krasheninnikov AV; Sorokin PB; Chernozatonskii LA
    Nanoscale; 2018 Aug; 10(30):14499-14509. PubMed ID: 30024005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons.
    Yeo JJ; Liu Z; Ng TY
    Nanotechnology; 2012 Sep; 23(38):385702. PubMed ID: 22947664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopore Creation in Graphene by Ion Beam Irradiation: Geometry, Quality, and Efficiency.
    Bai Z; Zhang L; Li H; Liu L
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24803-9. PubMed ID: 27572502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation and catalytic role of mediator atom in 2D materials.
    Lee GD; Robertson AW; Lee S; Lin YC; Oh JW; Park H; Joo YC; Yoon E; Suenaga K; Warner JH; Ewels CP
    Sci Adv; 2020 Jun; 6(24):eaba4942. PubMed ID: 32577521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive transmission electron microscopy of vacancy defects in graphene produced by ion irradiation.
    Lehtinen O; Tsai IL; Jalil R; Nair RR; Keinonen J; Kaiser U; Grigorieva IV
    Nanoscale; 2014 Jun; 6(12):6569-76. PubMed ID: 24802077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas adsorption efficacy of graphene sheets functionalised with carboxyl, hydroxyl and epoxy groups in conjunction with Stone-Thrower-Wales (STW) and inverse Stone-Thrower-Wales (ISTW) defects.
    Lalitha M; Lakshmipathi S
    Phys Chem Chem Phys; 2017 Nov; 19(45):30895-30913. PubMed ID: 29134994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supported Two-Dimensional Materials under Ion Irradiation: The Substrate Governs Defect Production.
    Kretschmer S; Maslov M; Ghaderzadeh S; Ghorbani-Asl M; Hlawacek G; Krasheninnikov AV
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30827-30836. PubMed ID: 30117320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.