These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27533241)

  • 1. 3-Dimensional Printed Anatomic Models as Planning Aids in Complex Oncology Surgery.
    Matsumoto JS; Morris JM; Rose PS
    JAMA Oncol; 2016 Sep; 2(9):1121-2. PubMed ID: 27533241
    [No Abstract]   [Full Text] [Related]  

  • 2. Applications of Three-Dimensional Printing in Surgical Oncology.
    Byrd CT; Lui NS; Guo HH
    Surg Oncol Clin N Am; 2022 Oct; 31(4):673-684. PubMed ID: 36243500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printing of surgical anatomy.
    Powers MK; Lee BR; Silberstein J
    Curr Opin Urol; 2016 May; 26(3):283-8. PubMed ID: 26825651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the potential utility of three-dimensional printed models in preoperative planning and patient consent in gastrointestinal cancer surgery.
    Povey M; Powell S; Howes N; Vimalachandran D; Sutton P
    Ann R Coll Surg Engl; 2021 Sep; 103(8):615-620. PubMed ID: 34464578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individualizing Management of Complex Esophageal Pathology Using Three-Dimensional Printed Models.
    Dickinson KJ; Matsumoto J; Cassivi SD; Reinersman JM; Fletcher JG; Morris J; Wong Kee Song LM; Blackmon SH
    Ann Thorac Surg; 2015 Aug; 100(2):692-7. PubMed ID: 26234839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.
    Mahmoud A; Bennett M
    Arch Pathol Lab Med; 2015 Aug; 139(8):1048-51. PubMed ID: 26230598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery.
    Kurenov SN; Ionita C; Sammons D; Demmy TL
    J Thorac Cardiovasc Surg; 2015 Apr; 149(4):973-9.e1. PubMed ID: 25659851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a 3D printed hollow aortic model to assist EVAR planning in a case with complex neck anatomy: potential of 3D printing to improve patient outcome.
    Tam MD; Latham T; Brown JR; Jakeways M
    J Endovasc Ther; 2014 Oct; 21(5):760-2. PubMed ID: 25290807
    [No Abstract]   [Full Text] [Related]  

  • 9. LOOKING GOOD. 3-D printed models gain favor with surgeons.
    Karas JA
    Hosp Health Netw; 2016 Apr; 90(4):14. PubMed ID: 27220163
    [No Abstract]   [Full Text] [Related]  

  • 10. Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice.
    Jones DB; Sung R; Weinberg C; Korelitz T; Andrews R
    Surg Innov; 2016 Apr; 23(2):189-95. PubMed ID: 26423911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology.
    Wake N; Chandarana H; Huang WC; Taneja SS; Rosenkrantz AB
    Clin Radiol; 2016 Jun; 71(6):610-4. PubMed ID: 26983650
    [No Abstract]   [Full Text] [Related]  

  • 12. 3D Printout Models vs. 3D-Rendered Images: Which Is Better for Preoperative Planning?
    Zheng YX; Yu DF; Zhao JG; Wu YL; Zheng B
    J Surg Educ; 2016; 73(3):518-23. PubMed ID: 26861582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airway stent insertion simulated with a three-dimensional printed airway model.
    Miyazaki T; Yamasaki N; Tsuchiya T; Matsumoto K; Takagi K; Nagayasu T
    Ann Thorac Surg; 2015 Jan; 99(1):e21-3. PubMed ID: 25555984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized development of human organs using 3D printing technology.
    Radenkovic D; Solouk A; Seifalian A
    Med Hypotheses; 2016 Feb; 87():30-3. PubMed ID: 26826637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance.
    Itagaki MW
    Diagn Interv Radiol; 2015; 21(4):338-41. PubMed ID: 26027767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure.
    Valverde I; Gomez G; Gonzalez A; Suarez-Mejias C; Adsuar A; Coserria JF; Uribe S; Gomez-Cia T; Hosseinpour AR
    Cardiol Young; 2015 Apr; 25(4):698-704. PubMed ID: 24809416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The current landscape of 3D printing in oncological surgical interventions.
    Makin G
    Future Oncol; 2019 Sep; 15(26):2999-3002. PubMed ID: 31424271
    [No Abstract]   [Full Text] [Related]  

  • 18. Thoracoscopic anatomical subsegmentectomy of the right S2b + S3 using a 3D printing model with rapid prototyping.
    Nakada T; Akiba T; Inagaki T; Morikawa T
    Interact Cardiovasc Thorac Surg; 2014 Oct; 19(4):696-8. PubMed ID: 25002275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing in orbital surgery: The next stage.
    Malik HH; Hossain IT
    Orbit; 2016 Jun; 35(3):163. PubMed ID: 27152987
    [No Abstract]   [Full Text] [Related]  

  • 20. Three-dimensional printing as an aid to airway evaluation after tracheotomy in a patient with laryngeal carcinoma.
    Han B; Liu Y; Zhang X; Wang J
    BMC Anesthesiol; 2016 Jan; 16():6. PubMed ID: 26781803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.