These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 27533279)

  • 1. Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation.
    Ma M; Zhang K; Li P; Jung MS; Jeong MJ; Park JH
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11819-23. PubMed ID: 27533279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-driven Oxygen Vacancies Extends Charge Carrier Lifetime for Efficient Solar Water Splitting.
    Sun M; Gao RT; He J; Liu X; Nakajima T; Zhang X; Wang L
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17601-17607. PubMed ID: 34018300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array.
    Xu F; Yao Y; Bai D; Xu R; Mei J; Wu D; Gao Z; Jiang K
    J Colloid Interface Sci; 2015 Nov; 458():194-9. PubMed ID: 26218199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst.
    Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L
    ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen Vacancy-Enhanced Photoelectrochemical Water Splitting of WO
    Lin W; Yu Y; Fang Y; Liu J; Li X; Wang J; Zhang Y; Wang C; Wang L; Yu X
    Langmuir; 2021 Jun; 37(21):6490-6497. PubMed ID: 34009993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO
    Huang W; Wang J; Bian L; Zhao C; Liu D; Guo C; Yang B; Cao W
    Phys Chem Chem Phys; 2018 Jun; 20(25):17268-17278. PubMed ID: 29901058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WO₃ nanoflakes for enhanced photoelectrochemical conversion.
    Li W; Da P; Zhang Y; Wang Y; Lin X; Gong X; Zheng G
    ACS Nano; 2014 Nov; 8(11):11770-7. PubMed ID: 25347213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing WO
    Wang Y; Chen C; Tian W; Xu W; Li L
    Nanotechnology; 2019 Dec; 30(49):495402. PubMed ID: 31476749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Photoelectrochemical Water Oxidation on WO
    Li K; Yin Y; Diao P
    Small; 2024 Jun; ():e2402474. PubMed ID: 38822710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BiVO
    Baek JH; Kim BJ; Han GS; Hwang SW; Kim DR; Cho IS; Jung HS
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1479-1487. PubMed ID: 27989115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical H
    Park E; Patil SS; Lee H; Kumbhar VS; Lee K
    Nanoscale; 2021 Oct; 13(40):16932-16941. PubMed ID: 34610073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy.
    He W; Yang Y; Wang L; Yang J; Xiang X; Yan D; Li F
    ChemSusChem; 2015 May; 8(9):1568-76. PubMed ID: 25711390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anodic nanoporous WO
    Abouelela MM; Kawamura G; Tan WK; Matsuda A
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):958-970. PubMed ID: 36152620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synergistic effect of surface and bulk O vacancies in a WO
    Zhao Q; Hao Z; Meng Y; Liu Z
    Dalton Trans; 2022 Apr; 51(16):6454-6463. PubMed ID: 35389417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Coupling Effect on Electron Transport in Hierarchical TaON/Au/ZnCo-LDH Photoanode with Enhanced Photoelectrochemical Water Oxidation.
    Wang H; Xia Y; Wang X; Han Y; Jiao X; Chen D
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33062-33073. PubMed ID: 31419108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.
    Feng X; Chen Y; Qin Z; Wang M; Guo L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformal BiVO
    Zhang X; Wang X; Wang D; Ye J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5623-5631. PubMed ID: 30004671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonochemical-driven ultrafast facile synthesis of WO
    Soltani T; Tayyebi A; Lee BK
    Ultrason Sonochem; 2019 Jan; 50():230-238. PubMed ID: 30270006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.