BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 27534152)

  • 1. [Inflammatory cells in coronary atherosclerotic plaques].
    Yamashita A; Asada Y
    Nihon Rinsho; 2016 Jun; 74 Suppl 4 Pt 1():88-93. PubMed ID: 27534152
    [No Abstract]   [Full Text] [Related]  

  • 2. In-situ analysis of mast cells and dendritic cells in coronary atherosclerosis in chronic kidney disease (CKD).
    Wachter DL; Neureiter D; Câmpean V; Hilgers KF; Büttner-Herold M; Daniel C; Benz K; Amann K
    Histol Histopathol; 2018 Aug; 33(8):871-886. PubMed ID: 29616745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B Lymphocytes and Macrophages in the Perivascular Adipose Tissue Are Associated With Coronary Atherosclerosis: An Autopsy Study.
    Farias-Itao DS; Pasqualucci CA; Nishizawa A; da Silva LFF; Campos FM; Bittencourt MS; da Silva KCS; Leite REP; Grinberg LT; Ferretti-Rebustini REL; Jacob-Filho W; Suemoto CK
    J Am Heart Assoc; 2019 Dec; 8(24):e013793. PubMed ID: 31818216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immune checkpoint inhibition alters the inflammatory cell composition of human coronary artery atherosclerosis.
    Newman JL; Stone JR
    Cardiovasc Pathol; 2019; 43():107148. PubMed ID: 31518915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis.
    Pertiwi KR; de Boer OJ; Mackaaij C; Pabittei DR; de Winter RJ; Li X; van der Wal AC
    J Pathol; 2019 Apr; 247(4):505-512. PubMed ID: 30506885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence of M4 macrophages within human coronary atherosclerotic plaques is associated with features of plaque instability.
    Erbel C; Wolf A; Lasitschka F; Linden F; Domschke G; Akhavanpoor M; Doesch AO; Katus HA; Gleissner CA
    Int J Cardiol; 2015; 186():219-25. PubMed ID: 25828120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrophages and mast cells are involved in carotid plaque instability.
    Marzullo A; Ciccone MM; Covelli C; Serio G; Ribatti D
    Rom J Morphol Embryol; 2011; 52(3 Suppl):981-4. PubMed ID: 22119813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological analysis of cell subpopulations within carotid atherosclerotic plaques.
    Businaro R; Digregorio M; Riganò R; Profumo E; Buttari B; Leone S; Salvati B; Capoano R; D'Amati G; Fumagalli L
    Ital J Anat Embryol; 2005; 110(2 Suppl 1):109-15. PubMed ID: 16101028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [T-cell subpopulations and macrophages in stable and unstable coronary atherosclerotic plaques].
    Chumachenko PV; Belokon' EV; Akchurin RS; Zhdanov VS
    Arkh Patol; 2012; 74(1):3-6. PubMed ID: 22712295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD40-CD154 expression in calcified and non-calcified coronary lesions of patients with chronic renal failure.
    Campean V; Neureiter D; Nonnast-Daniel B; Garlichs C; Gross ML; Amann K
    Atherosclerosis; 2007 Jan; 190(1):156-66. PubMed ID: 16494885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Update on acute coronary syndromes: the pathologists' view.
    Falk E; Nakano M; Bentzon JF; Finn AV; Virmani R
    Eur Heart J; 2013 Mar; 34(10):719-28. PubMed ID: 23242196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adventitial macrophage and lymphocyte accumulation accompanying early stages of human coronary atherogenesis.
    Kortelainen ML; Porvari K
    Cardiovasc Pathol; 2014; 23(4):193-7. PubMed ID: 24685316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mast cells in human carotid atherosclerotic plaques are associated with intraplaque microvessel density and the occurrence of future cardiovascular events.
    Willems S; Vink A; Bot I; Quax PH; de Borst GJ; de Vries JP; van de Weg SM; Moll FL; Kuiper J; Kovanen PT; de Kleijn DP; Hoefer IE; Pasterkamp G
    Eur Heart J; 2013 Dec; 34(48):3699-706. PubMed ID: 23756333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Plaque development and destabilization in human coronary atherosclerotic lesions].
    Naruko T; Sugioka K; Ueda M
    Nihon Rinsho; 2011 Sep; 69 Suppl 7():89-94. PubMed ID: 22518971
    [No Abstract]   [Full Text] [Related]  

  • 15. Imaging of coronary artery plaques using contrast-enhanced optical coherence tomography.
    Foin N; Mari JM; Davies JE; Di Mario C; Girard MJ
    Eur Heart J Cardiovasc Imaging; 2013 Jan; 14(1):85. PubMed ID: 22858562
    [No Abstract]   [Full Text] [Related]  

  • 16. [Coronary plaque and endothelial function].
    Katagiri H
    Nihon Rinsho; 2016 Jun; 74 Suppl 4 Pt 1():94-8. PubMed ID: 27534153
    [No Abstract]   [Full Text] [Related]  

  • 17. Bone mineral density: a potential determinant of atherosclerotic plaque morphology in established coronary artery disease?
    Sivri N; Yalta T; Yalta K; Yetkin E; Aksoy Y
    Int J Cardiol; 2011 Mar; 147(3):448. PubMed ID: 21194759
    [No Abstract]   [Full Text] [Related]  

  • 18. Do plaques rapidly progress prior to myocardial infarction? The interplay between plaque vulnerability and progression.
    Ahmadi A; Leipsic J; Blankstein R; Taylor C; Hecht H; Stone GW; Narula J
    Circ Res; 2015 Jun; 117(1):99-104. PubMed ID: 26089367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Vascular Calcification - Pathological Mechanism and Clinical Application - . The significance of arterial calcification in unstable plaques].
    Inaba M; Ueda M
    Clin Calcium; 2015 May; 25(5):679-86. PubMed ID: 25926571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is non-obstructive coronary artery disease clinically important?
    Sandhu A; Maddox TM
    Future Cardiol; 2014 Nov; 10(6):673-5. PubMed ID: 25495806
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.