BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 27534384)

  • 1. Salinity-dependent toxicity of water-dispersible, single-walled carbon nanotubes to Japanese medaka embryos.
    Kataoka C; Nakahara K; Shimizu K; Kowase S; Nagasaka S; Ifuku S; Kashiwada S
    J Appl Toxicol; 2017 Apr; 37(4):408-416. PubMed ID: 27534384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development toxicity of functionalized single-walled carbon nanotubes on rare minnow embryos and larvae.
    Zhu B; Liu GL; Ling F; Song LS; Wang GX
    Nanotoxicology; 2015; 9(5):579-90. PubMed ID: 25211547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of single-wall carbon nanotubes functionalized with polyethylene glycol in zebrafish (Danio rerio) embryos.
    Girardi FA; Bruch GE; Peixoto CS; Dal Bosco L; Sahoo SK; Gonçalves CO; Santos AP; Furtado CA; Fantini C; Barros DM
    J Appl Toxicol; 2017 Feb; 37(2):214-221. PubMed ID: 27320845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salinity-dependent Toxicity Assay of Silver Nanocolloids Using Medaka Eggs.
    Kataoka C; Kashiwada S
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicological assessment of PEGylated single-walled carbon nanotubes in early developing zebrafish.
    Cordeiro MF; Girardi FA; Gonçalves COF; Peixoto CS; Dal Bosco L; Sahoo SK; Santos AP; Fantini C; Bruch GE; Horn AP; Barros DM
    Toxicol Appl Pharmacol; 2018 May; 347():54-59. PubMed ID: 29609001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos.
    Cheng J; Flahaut E; Cheng SH
    Environ Toxicol Chem; 2007 Apr; 26(4):708-16. PubMed ID: 17447555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms.
    Sohn EK; Chung YS; Johari SA; Kim TG; Kim JK; Lee JH; Lee YH; Kang SW; Yu IJ
    Biomed Res Int; 2015; 2015():323090. PubMed ID: 25654094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental toxicity of copper in marine medaka (Oryzias melastigma) embryos and larvae.
    Wang RF; Zhu LM; Zhang J; An XP; Yang YP; Song M; Zhang L
    Chemosphere; 2020 May; 247():125923. PubMed ID: 31972495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risks of single-walled carbon nanotubes acting as contaminants-carriers: potential release of phenanthrene in Japanese medaka (Oryzias latipes).
    Su Y; Yan X; Pu Y; Xiao F; Wang D; Yang M
    Environ Sci Technol; 2013 May; 47(9):4704-10. PubMed ID: 23578164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice.
    Campagnolo L; Massimiani M; Palmieri G; Bernardini R; Sacchetti C; Bergamaschi A; Vecchione L; Magrini A; Bottini M; Pietroiusti A
    Part Fibre Toxicol; 2013 Jun; 10():21. PubMed ID: 23742083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of toxicity mechanism of single-walled carbon nanotubes.
    Chen PH; Hsiao KM; Chou CC
    Biomaterials; 2013 Jul; 34(22):5661-9. PubMed ID: 23623425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos.
    Liu XT; Mu XY; Wu XL; Meng LX; Guan WB; Ma YQ; Sun H; Wang CJ; Li XF
    Biomed Environ Sci; 2014 Sep; 27(9):676-83. PubMed ID: 25256857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersibility and dispersion stability of carbon nanotubes in synthetic aquatic growth media and natural freshwater.
    Glomstad B; Zindler F; Jenssen BM; Booth AM
    Chemosphere; 2018 Jun; 201():269-277. PubMed ID: 29525654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant toxic role for single-walled carbon nanotubes during normal embryogenesis.
    Roman D; Yasmeen A; Mireuta M; Stiharu I; Al Moustafa AE
    Nanomedicine; 2013 Oct; 9(7):945-50. PubMed ID: 23563045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the interaction of single-walled carbon nanotubes with 4-nonylphenol on their in vitro toxicity.
    Caballero-Díaz E; Guzmán-Ruiz R; Malagón MM; Simonet BM; Valcárcel M
    J Hazard Mater; 2014 Jun; 275():107-15. PubMed ID: 24853140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length effects of single-walled carbon nanotubes on pulmonary toxicity after intratracheal instillation in rats.
    Ema M; Takehara H; Naya M; Kataura H; Fujita K; Honda K
    J Toxicol Sci; 2017; 42(3):367-378. PubMed ID: 28496043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice.
    Tong H; McGee JK; Saxena RK; Kodavanti UP; Devlin RB; Gilmour MI
    Toxicol Appl Pharmacol; 2009 Sep; 239(3):224-32. PubMed ID: 19481103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-walled carbon nanotubes (SWCNTs) inhibit heat shock protein 90 (HSP90) signaling in human lung fibroblasts and keratinocytes.
    Ong LC; Tan YF; Tan BS; Chung FF; Cheong SK; Leong CO
    Toxicol Appl Pharmacol; 2017 Aug; 329():347-357. PubMed ID: 28673683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of Salinity and Organic Compounds on Embryo Development in Three Medaka Oryzias Congeners with Habitats Ranging from Freshwater to Marine.
    Horie Y; Kanazawa N; Suzuki A; Yonekura K; Chiba T
    Bull Environ Contam Toxicol; 2019 Sep; 103(3):411-415. PubMed ID: 31203410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions.
    Alpatova AL; Shan W; Babica P; Upham BL; Rogensues AR; Masten SJ; Drown E; Mohanty AK; Alocilja EC; Tarabara VV
    Water Res; 2010 Jan; 44(2):505-20. PubMed ID: 19945136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.