These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27534461)

  • 1. Two-way shift of wavelength in holographic sensing of organic vapor in nanozeolites dispersed acrylamide photopolymer.
    Mao D; Geng Y; Liu H; Zhou K; Xian L; Yu D
    Appl Opt; 2016 Aug; 55(23):6212-21. PubMed ID: 27534461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of spectrum strength in holographic sensing in nanozeolites dispersed acrylamide photopolymer.
    Yu D; Liu H; Mao D; Geng Y; Wang W; Sun L; Lv J
    Opt Express; 2015 Nov; 23(22):29113-26. PubMed ID: 26561180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of holographic sensing response in substrate-free acrylamide photopolymer.
    Zhou K; Geng Y; Liu H; Wang S; Mao D; Yu D
    Appl Opt; 2017 May; 56(13):3714-3724. PubMed ID: 28463259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic humidity response of slanted gratings in moisture-absorbing acrylamide photopolymer.
    Yu D; Liu H; Mao D; Geng Y; Wang W; Sun L; Lv J
    Appl Opt; 2015 Aug; 54(22):6804-12. PubMed ID: 26368095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-induced spectrum response of volume grating as an effective strategy for holographic sensing in acrylamide polymer part I: sensing.
    Liu H; Yu D; Zhou K; Mao D; Liu L; Wang H; Wang W; Song Q
    Appl Opt; 2016 Dec; 55(35):9907-9916. PubMed ID: 27958409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure-dependent diffraction spectrum response in photopolymer-based holographic sensor.
    Jiao X; Liu H; Wang B; Wang R; Li L
    Appl Opt; 2019 Oct; 58(30):8302-8308. PubMed ID: 31674505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-induced spectrum response of a volume grating as an effective strategy for holographic sensing in an acrylamide polymer part II: physical mechanism.
    Liu H; Yu D; Zhou K; Mao D; Liu L; Wang H; Wang W; Song Q
    Appl Opt; 2016 Dec; 55(35):9917-9924. PubMed ID: 27958410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversibility and repeatability of the tensile deformation response in holographic sensors.
    Liu H; Wang R; Wang B; Li L; Jiao X; Song Q; Yu D
    Appl Opt; 2019 Mar; 58(8):2042-2049. PubMed ID: 30874072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of temperature-induced spectrum characterization in a holographic sensor based on N-isopropylacrylamide photopolymer hydrogel.
    Liu H; Yu D; Zhou K; Wang S; Luo S; Wang W; Song Q
    Appl Opt; 2017 Nov; 56(32):9006-9013. PubMed ID: 29131186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing response characterization of a micro-holographic sensor and its kinetics simulation.
    Li L; Wei M; Wang B; Liu H; Zou Y; Qin S
    Appl Opt; 2019 Dec; 58(35):9700-9708. PubMed ID: 31873571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Toxicity Photopolymer for Reflection Holography.
    Cody D; Gribbin S; Mihaylova E; Naydenova I
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18481-7. PubMed ID: 27391405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-isopropylacrylamide-based photopolymer for holographic recording of thermosensitive transmission and reflection gratings.
    Mikulchyk T; Martin S; Naydenova I
    Appl Opt; 2017 Aug; 56(22):6348-6356. PubMed ID: 29047834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-deformation response of a holographic sensor in highly stretchable polymer hydrogel.
    Yu D; Liu H; Wang R; Li L; Luo S; Lv J; Wang W
    Opt Lett; 2018 Jul; 43(13):3037-3040. PubMed ID: 29957775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shrinkage during holographic recording in photopolymer films determined by holographic interferometry.
    Moothanchery M; Bavigadda V; Toal V; Naydenova I
    Appl Opt; 2013 Dec; 52(35):8519-27. PubMed ID: 24513896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer.
    Gallego S; Ortuno M; Neipp C; Garcia C; Belendez A; Pascual I
    Opt Express; 2003 Jan; 11(2):181-90. PubMed ID: 19461722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system.
    Naydenova I; Jallapuram R; Howard R; Martin S; Toal V
    Appl Opt; 2004 May; 43(14):2900-5. PubMed ID: 15143815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of glycerol on a diacetone acrylamide-based holographic photopolymer material.
    Cody D; Naydenova I; Mihaylova E
    Appl Opt; 2013 Jan; 52(3):489-94. PubMed ID: 23338198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-polymer composite volume holographic gratings dispersed with ultrahigh-refractive-index hyperbranched polymer as organic nanoparticles.
    Tomita Y; Urano H; Fukamizu TA; Kametani Y; Nishimura N; Odoi K
    Opt Lett; 2016 Mar; 41(6):1281-4. PubMed ID: 26977689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the Effect of Methyldiethanolamine Initiator on the Recording Properties of Acrylamide Based Photopolymer.
    Rogers B; Martin S; Naydenova I
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32218188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of holographic reflection gratings recorded in polyvinyl alcohol/acrylamide photopolymer.
    Fernandez E; Perez-Molina M; Fuentes R; Ortuño M; Neipp C; Belendez A; Pascual I
    Appl Opt; 2013 Mar; 52(8):1581-90. PubMed ID: 23478760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.