BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 27534530)

  • 21. Genetic dissection of Ragulator structure and function in amino acid-dependent regulation of mTORC1.
    Nada S; Okada M
    J Biochem; 2020 Dec; 168(6):621-632. PubMed ID: 32653916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Central Role of mTORC1 in Amino Acid Sensing.
    Yue S; Li G; He S; Li T
    Cancer Res; 2022 Sep; 82(17):2964-2974. PubMed ID: 35749594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TMEM55B contributes to lysosomal homeostasis and amino acid-induced mTORC1 activation.
    Hashimoto Y; Shirane M; Nakayama KI
    Genes Cells; 2018 Jun; 23(6):418-434. PubMed ID: 29644770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Rag GTPase-Ragulator complex attenuates TOR complex 1 signaling in fission yeast.
    Fukuda T; Shiozaki K
    Autophagy; 2018; 14(6):1105-1106. PubMed ID: 29799770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redundant electrostatic interactions between GATOR1 and the Rag GTPase heterodimer drive efficient amino acid sensing in human cells.
    Doxsey DD; Tettoni SD; Egri SB; Shen K
    J Biol Chem; 2023 Jul; 299(7):104880. PubMed ID: 37269949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The GATOR-Rag GTPase pathway inhibits mTORC1 activation by lysosome-derived amino acids.
    Hesketh GG; Papazotos F; Pawling J; Rajendran D; Knight JDR; Martinez S; Taipale M; Schramek D; Dennis JW; Gingras AC
    Science; 2020 Oct; 370(6514):351-356. PubMed ID: 33060361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phospholipase D-dependent mTOR complex 1 (mTORC1) activation by glutamine.
    Bernfeld E; Menon D; Vaghela V; Zerin I; Faruque P; Frias MA; Foster DA
    J Biol Chem; 2018 Oct; 293(42):16390-16401. PubMed ID: 30194281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nutrient regulation of mTORC1 at a glance.
    Condon KJ; Sabatini DM
    J Cell Sci; 2019 Nov; 132(21):. PubMed ID: 31722960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms.
    Shen K; Sabatini DM
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9545-9550. PubMed ID: 30181260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of mTORC1 activation in response to amino acids.
    Manifava M; Smith M; Rotondo S; Walker S; Niewczas I; Zoncu R; Clark J; Ktistakis NT
    Elife; 2016 Oct; 5():. PubMed ID: 27725083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-Ragulator lysosomal scaffold.
    Lawrence RE; Cho KF; Rappold R; Thrun A; Tofaute M; Kim DJ; Moldavski O; Hurley JH; Zoncu R
    Nat Cell Biol; 2018 Sep; 20(9):1052-1063. PubMed ID: 30061680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. mTORC1 and Nutrient Homeostasis: The Central Role of the Lysosome.
    Rabanal-Ruiz Y; Korolchuk VI
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29534520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for the assembly of the Ragulator-Rag GTPase complex.
    Yonehara R; Nada S; Nakai T; Nakai M; Kitamura A; Ogawa A; Nakatsumi H; Nakayama KI; Li S; Standley DM; Yamashita E; Nakagawa A; Okada M
    Nat Commun; 2017 Nov; 8(1):1625. PubMed ID: 29158492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RagC phosphorylation autoregulates mTOR complex 1.
    Yang G; Humphrey SJ; Murashige DS; Francis D; Wang QP; Cooke KC; Neely GG; James DE
    EMBO J; 2019 Feb; 38(3):. PubMed ID: 30552228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis for Ragulator functioning as a scaffold in membrane-anchoring of Rag GTPases and mTORC1.
    Zhang T; Wang R; Wang Z; Wang X; Wang F; Ding J
    Nat Commun; 2017 Nov; 8(1):1394. PubMed ID: 29123114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of mTORC1 by Upstream Stimuli.
    Melick CH; Jewell JL
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32854217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. mTORC1 activity is supported by spatial association with focal adhesions.
    Rabanal-Ruiz Y; Byron A; Wirth A; Madsen R; Sedlackova L; Hewitt G; Nelson G; Stingele J; Wills JC; Zhang T; Zeug A; Fässler R; Vanhaesebroeck B; Maddocks ODK; Ponimaskin E; Carroll B; Korolchuk VI
    J Cell Biol; 2021 May; 220(5):. PubMed ID: 33635313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disruption of the vacuolar-type H
    Kissing S; Rudnik S; Damme M; Lüllmann-Rauch R; Ichihara A; Kornak U; Eskelinen EL; Jabs S; Heeren J; De Brabander JK; Haas A; Saftig P
    Autophagy; 2017 Apr; 13(4):670-685. PubMed ID: 28129027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway.
    Wolfson RL; Sabatini DM
    Cell Metab; 2017 Aug; 26(2):301-309. PubMed ID: 28768171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Rag GTPase dimer code defines the regulation of mTORC1 by amino acids.
    Gollwitzer P; Grützmacher N; Wilhelm S; Kümmel D; Demetriades C
    Nat Cell Biol; 2022 Sep; 24(9):1394-1406. PubMed ID: 36097072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.