BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27534698)

  • 1. Putting life on ice: bacteria that bind to frozen water.
    Bar Dolev M; Bernheim R; Guo S; Davies PL; Braslavsky I
    J R Soc Interface; 2016 Aug; 13(121):. PubMed ID: 27534698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations.
    Braslavsky I; Drori R
    J Vis Exp; 2013 Feb; (72):e4189. PubMed ID: 23407403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice.
    Vance TD; Olijve LL; Campbell RL; Voets IK; Davies PL; Guo S
    Biosci Rep; 2014 Jul; 34(4):. PubMed ID: 24892750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity.
    Guo S; Garnham CP; Whitney JC; Graham LA; Davies PL
    PLoS One; 2012; 7(11):e48805. PubMed ID: 23144980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Cold-Finger Device for the Investigation of Ice-Binding Proteins.
    Haleva L; Celik Y; Bar-Dolev M; Pertaya-Braun N; Kaner A; Davies PL; Braslavsky I
    Biophys J; 2016 Sep; 111(6):1143-1150. PubMed ID: 27653473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Ca²⁺ in folding the tandem β-sandwich extender domains of a bacterial ice-binding adhesin.
    Guo S; Garnham CP; Karunan Partha S; Campbell RL; Allingham JS; Davies PL
    FEBS J; 2013 Nov; 280(22):5919-32. PubMed ID: 24024640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium.
    Gilbert JA; Davies PL; Laybourn-Parry J
    FEMS Microbiol Lett; 2005 Apr; 245(1):67-72. PubMed ID: 15796981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete genome sequence of Marinomonas arctica BSI20414, a giant antifreeze protein-producing bacterium isolated from Arctic sea ice.
    Liao L; Gao S; Xu Y; Su S; Wen J; Yu Y; Chen B
    Mar Genomics; 2021 Jun; 57():100829. PubMed ID: 33867119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a 1.5-MDa adhesin that binds its Antarctic bacterium to diatoms and ice.
    Guo S; Stevens CA; Vance TDR; Olijve LLC; Graham LA; Campbell RL; Yazdi SR; Escobedo C; Bar-Dolev M; Yashunsky V; Braslavsky I; Langelaan DN; Smith SP; Allingham JS; Voets IK; Davies PL
    Sci Adv; 2017 Aug; 3(8):e1701440. PubMed ID: 28808685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Effects of Subfreezing Temperature and Salt Concentration on Ice Growth Inhibition of Antarctic Gram-Negative Bacterium Marinomonas Primoryensis Using Coarse-Grained Simulation.
    Nguyen H; Dac Van T; Tran N; Le L
    Appl Biochem Biotechnol; 2016 Apr; 178(8):1534-45. PubMed ID: 26758589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice-Binding Proteins Associated with an Antarctic Cyanobacterium,
    Raymond JA; Janech MG; Mangiagalli M
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33158891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From ice-binding proteins to bio-inspired antifreeze materials.
    Voets IK
    Soft Matter; 2017 Jul; 13(28):4808-4823. PubMed ID: 28657626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ice-binding and tandem beta-sandwich domain-containing protein in Shewanella frigidimarina is a potential new type of ice adhesin.
    Vance TDR; Graham LA; Davies PL
    FEBS J; 2018 Apr; 285(8):1511-1527. PubMed ID: 29498209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis of Ligand Selectivity by a Bacterial Adhesin Lectin Involved in Multispecies Biofilm Formation.
    Guo S; Vance TDR; Zahiri H; Eves R; Stevens C; Hehemann JH; Vidal-Melgosa S; Davies PL
    mBio; 2021 Apr; 12(2):. PubMed ID: 33824212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL
    Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct molecular features facilitating ice-binding mechanisms in hyperactive antifreeze proteins closely related to an Antarctic sea ice bacterium.
    Banerjee R; Chakraborti P; Bhowmick R; Mukhopadhyay S
    J Biomol Struct Dyn; 2015; 33(7):1424-41. PubMed ID: 25190099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH on the activity of ice-binding protein from Marinomonas primoryensis.
    Delesky EA; Thomas PE; Charrier M; Cameron JC; Srubar WV
    Extremophiles; 2021 Jan; 25(1):1-13. PubMed ID: 33090301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties and biotechnological applications of ice-binding proteins in bacteria.
    Cid FP; Rilling JI; Graether SP; Bravo LA; Mora Mde L; Jorquera MA
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved structural features anchor biofilm-associated RTX-adhesins to the outer membrane of bacteria.
    Guo S; Langelaan DN; Phippen SW; Smith SP; Voets IK; Davies PL
    FEBS J; 2018 May; 285(10):1812-1826. PubMed ID: 29575515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice-binding proteins from the fungus Antarctomyces psychrotrophicus possibly originate from two different bacteria through horizontal gene transfer.
    Arai T; Fukami D; Hoshino T; Kondo H; Tsuda S
    FEBS J; 2019 Mar; 286(5):946-962. PubMed ID: 30548092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.