BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27534698)

  • 21. Multiple ice-binding proteins of probable prokaryotic origin in an Antarctic lake alga, Chlamydomonas sp. ICE-MDV (Chlorophyceae).
    Raymond JA; Morgan-Kiss R
    J Phycol; 2017 Aug; 53(4):848-854. PubMed ID: 28543018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational study on ice growth inhibition of Antarctic bacterium antifreeze protein using coarse grained simulation.
    Nguyen H; Le L; Ho TB
    J Chem Phys; 2014 Jun; 140(22):225101. PubMed ID: 24929413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression and Partial Characterization of an Ice-Binding Protein from a Bacterium Isolated at a Depth of 3,519 m in the Vostok Ice Core, Antarctica.
    Achberger AM; Brox TI; Skidmore ML; Christner BC
    Front Microbiol; 2011; 2():255. PubMed ID: 22207866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic Insights into the Folding Mechanism of Region V in Ice-Binding Protein Secreted by
    Wang H; Miao X; Zhai C; Chen Y; Lin Z; Zhou X; Guo M; Chai Z; Wang R; Shen W; Li H; Hu C
    Langmuir; 2023 Nov; 39(45):16128-16137. PubMed ID: 37916685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.
    Drori R; Celik Y; Davies PL; Braslavsky I
    J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1.
    Do H; Kim SJ; Kim HJ; Lee JH
    Acta Crystallogr D Biol Crystallogr; 2014 Apr; 70(Pt 4):1061-73. PubMed ID: 24699650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional Analysis of a Bacterial Antifreeze Protein Indicates a Cooperative Effect between Its Two Ice-Binding Domains.
    Wang C; Oliver EE; Christner BC; Luo BH
    Biochemistry; 2016 Jul; 55(28):3975-83. PubMed ID: 27359086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria.
    Mangiagalli M; Bar-Dolev M; Tedesco P; Natalello A; Kaleda A; Brocca S; de Pascale D; Pucciarelli S; Miceli C; Braslavsky I; Lotti M
    FEBS J; 2017 Jan; 284(1):163-177. PubMed ID: 27860412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ice-Binding Proteins in Plants.
    Bredow M; Walker VK
    Front Plant Sci; 2017; 8():2153. PubMed ID: 29312400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of ice binding proteins with ice, water and ions.
    Oude Vrielink AS; Aloi A; Olijve LL; Voets IK
    Biointerphases; 2016 Mar; 11(1):018906. PubMed ID: 26787386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular evidence of intertidal habitats selecting for repeated ice-binding protein evolution in invertebrates.
    Box ICH; Matthews BJ; Marshall KE
    J Exp Biol; 2022 Mar; 225(Suppl_1):. PubMed ID: 35258616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carrot 'antifreeze' protein has an irregular ice-binding site that confers weak freezing point depression but strong inhibition of ice recrystallization.
    Wang Y; Graham LA; Han Z; Eves R; Gruneberg AK; Campbell RL; Zhang H; Davies PL
    Biochem J; 2020 Jun; 477(12):2179-2192. PubMed ID: 32459306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mutation to a fish ice-binding protein synthesized in transgenic Caenorhabditis elegans modulates its cold tolerance.
    Kuramochi M; Zhu S; Takanashi C; Yang Y; Arai T; Shinkai Y; Doi M; Mio K; Tsuda S; Sasaki YC
    Biochem Biophys Res Commun; 2022 Nov; 628():98-103. PubMed ID: 36084557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ice and anti-nucleating activities of an ice-binding protein from the annual grass, Brachypodium distachyon.
    Bredow M; Tomalty HE; Smith L; Walker VK
    Plant Cell Environ; 2018 May; 41(5):983-992. PubMed ID: 28035668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of Ice-Binding Proteins in Caenorhabditis elegans Improves the Survival Rate upon Cold Shock and during Freezing.
    Kuramochi M; Takanashi C; Yamauchi A; Doi M; Mio K; Tsuda S; Sasaki YC
    Sci Rep; 2019 May; 9(1):6246. PubMed ID: 31092839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of a bacterial ice binding protein with two faces of interaction with ice.
    Mangiagalli M; Sarusi G; Kaleda A; Bar Dolev M; Nardone V; Vena VF; Braslavsky I; Lotti M; Nardini M
    FEBS J; 2018 May; 285(9):1653-1666. PubMed ID: 29533528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Essential role of calcium in extending RTX adhesins to their target.
    Vance TDR; Ye Q; Conroy B; Davies PL
    J Struct Biol X; 2020; 4():100036. PubMed ID: 32984811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Type II Ice-Binding Proteins Isolated from an Arctic Microalga Are Similar to Adhesin-Like Proteins and Increase Freezing Tolerance in Transgenic Plants.
    Cho SM; Kim S; Cho H; Lee H; Lee JH; Lee H; Park H; Kang S; Choi HG; Lee J
    Plant Cell Physiol; 2019 Dec; 60(12):2744-2757. PubMed ID: 31418793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.