These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 27534816)

  • 1. Homeoviscous Adaptation and the Regulation of Membrane Lipids.
    Ernst R; Ejsing CS; Antonny B
    J Mol Biol; 2016 Dec; 428(24 Pt A):4776-4791. PubMed ID: 27534816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homeoviscous Adaptation of Membranes in Archaea.
    Oger PM
    Subcell Biochem; 2015; 72():383-403. PubMed ID: 26174392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principles of Membrane Adaptation Revealed through Environmentally Induced Bacterial Lipidome Remodeling.
    Chwastek G; Surma MA; Rizk S; Grosser D; Lavrynenko O; Rucińska M; Jambor H; Sáenz J
    Cell Rep; 2020 Sep; 32(12):108165. PubMed ID: 32966790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of lipid saturation without sensing membrane fluidity.
    Ballweg S; Sezgin E; Doktorova M; Covino R; Reinhard J; Wunnicke D; Hänelt I; Levental I; Hummer G; Ernst R
    Nat Commun; 2020 Feb; 11(1):756. PubMed ID: 32029718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of the membrane in Archaea.
    Oger PM; Cario A
    Biophys Chem; 2013 Dec; 183():42-56. PubMed ID: 23915818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultured human skin fibroblasts modify their plasma membrane lipid composition and fluidity according to growth temperature suggesting homeoviscous adaptation at hypothermic (30 degrees C) but not at hyperthermic (40 degrees C) temperatures.
    Sojcic Z; Toplak H; Zuehlke R; Honegger UE; Bühlmann R; Wiesmann UN
    Biochim Biophys Acta; 1992 Feb; 1104(1):31-7. PubMed ID: 1550851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipids, proteins, and their interplay in the dynamics of temperature-stressed membranes of a cyanobacterium, Synechocystis PCC 6803.
    Laczkó-Dobos H; Szalontai B
    Biochemistry; 2009 Oct; 48(42):10120-8. PubMed ID: 19788309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryostabilization of the Cell Membrane of a Psychrotolerant Bacteria via Homeoviscous Adaptation.
    Erimban S; Daschakraborty S
    J Phys Chem Lett; 2020 Sep; 11(18):7709-7716. PubMed ID: 32840376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria.
    Gohrbandt M; Lipski A; Grimshaw JW; Buttress JA; Baig Z; Herkenhoff B; Walter S; Kurre R; Deckers-Hebestreit G; Strahl H
    EMBO J; 2022 Mar; 41(5):e109800. PubMed ID: 35037270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation?
    Hazel JR
    Annu Rev Physiol; 1995; 57():19-42. PubMed ID: 7778864
    [No Abstract]   [Full Text] [Related]  

  • 11. Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors.
    Puth K; Hofbauer HF; Sáenz JP; Ernst R
    Biol Chem; 2015 Sep; 396(9-10):1043-58. PubMed ID: 25849795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian phospholipid homeostasis: homeoviscous adaptation deconstructed by lipidomic data driven modelling.
    Dymond MK
    Chem Phys Lipids; 2015 Oct; 191():136-46. PubMed ID: 26375761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive regulation of membrane lipids and fluidity during thermal acclimation in Tetrahymena.
    Nozawa Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2011; 87(8):450-62. PubMed ID: 21986311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homeoviscous Adaptation of the Acinetobacter baumannii Outer Membrane: Alteration of Lipooligosaccharide Structure during Cold Stress.
    Herrera CM; Voss BJ; Trent MS
    mBio; 2021 Aug; 12(4):e0129521. PubMed ID: 34425709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective.
    de Kroon AI; Rijken PJ; De Smet CH
    Prog Lipid Res; 2013 Oct; 52(4):374-94. PubMed ID: 23631861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Adaptive changes of chloroplast membrane lipid components under environmental factors].
    Taran NIu
    Ukr Biokhim Zh (1999); 2000; 72(1):21-31. PubMed ID: 10979555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homeoviscous Adaptation of the Lipid Membrane of a Soil Bacterium Surviving under Diurnal Temperature Variation: A Molecular Simulation Perspective.
    Erimban S; Daschakraborty S
    J Phys Chem B; 2022 Oct; 126(39):7638-7650. PubMed ID: 36166758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of membrane lipid homeostasis by lipid-bilayer associated sensors: A mechanism conserved from bacteria to humans.
    de Mendoza D; Pilon M
    Prog Lipid Res; 2019 Oct; 76():100996. PubMed ID: 31449824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness.
    Levental KR; Malmberg E; Symons JL; Fan YY; Chapkin RS; Ernst R; Levental I
    Nat Commun; 2020 Mar; 11(1):1339. PubMed ID: 32165635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipidomics of homeoviscous adaptation to low temperatures in
    Barbarek SC; Shah R; Paul S; Alvarado G; Appala K; Phillips C; Henderson EC; Strandquist ET; Pokorny A; Singh VK; Gatto C; Dahl J-U; Hines KM; Wilkinson BJ
    J Bacteriol; 2024 Jul; 206(7):e0018724. PubMed ID: 38953643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.