BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27534817)

  • 1. A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation.
    Sato Y; Kujirai T; Arai R; Asakawa H; Ohtsuki C; Horikoshi N; Yamagata K; Ueda J; Nagase T; Haraguchi T; Hiraoka Y; Kimura A; Kurumizaka H; Kimura H
    J Mol Biol; 2016 Oct; 428(20):3885-3902. PubMed ID: 27534817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-quantitative Analysis of H4K20me1 Levels in Living Cells Using Mintbody.
    Sato Y; Kimura H
    Bio Protoc; 2017 May; 7(10):e2276. PubMed ID: 34541056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing histone H4K20me1 in knock-in mice expressing the mCherry-tagged modification-specific intracellular antibody.
    Sato Y; Takenoshita M; Ueoka M; Ueda J; Yamagata K; Kimura H
    Histochem Cell Biol; 2024 May; ():. PubMed ID: 38762823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing the Dynamics of Inactive X Chromosomes in Living Cells Using Antibody-Based Fluorescent Probes.
    Sato Y; Stasevich TJ; Kimura H
    Methods Mol Biol; 2018; 1861():91-102. PubMed ID: 30218362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Behavior of Inactive X Chromosome Territory During the Cell Cycle as Revealed by H3K27me3-Specific Intracellular Antibody.
    Sato Y; Kimura H
    Methods Mol Biol; 2021; 2329():237-247. PubMed ID: 34085227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simple Method for Visualization of Locus-Specific H4K20me1 Modifications in Living
    Shinkai Y; Kuramochi M; Doi M
    G3 (Bethesda); 2018 Jul; 8(7):2249-2255. PubMed ID: 29724885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically encoded system to track histone modification in vivo.
    Sato Y; Mukai M; Ueda J; Muraki M; Stasevich TJ; Horikoshi N; Kujirai T; Kita H; Kimura T; Hira S; Okada Y; Hayashi-Takanaka Y; Obuse C; Kurumizaka H; Kawahara A; Yamagata K; Nozaki N; Kimura H
    Sci Rep; 2013; 3():2436. PubMed ID: 23942372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed Imaging of Posttranslational Modifications of Endogenous Proteins in Live Cells.
    Sato Y; Kimura H
    Methods Mol Biol; 2021; 2350():31-41. PubMed ID: 34331277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualizing posttranslational and epigenetic modifications of endogenous proteins in vivo.
    Kimura H; Hayashi-Takanaka Y; Stasevich TJ; Sato Y
    Histochem Cell Biol; 2015 Aug; 144(2):101-9. PubMed ID: 26138929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Live imaging of H3K9 acetylation in plant cells.
    Kurita K; Sakamoto T; Yagi N; Sakamoto Y; Ito A; Nishino N; Sako K; Yoshida M; Kimura H; Seki M; Matsunaga S
    Sci Rep; 2017 Apr; 7():45894. PubMed ID: 28418019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PR-Set7-mediated monomethylation of histone H4 lysine 20 at specific genomic regions induces transcriptional repression.
    Congdon LM; Houston SI; Veerappan CS; Spektor TM; Rice JC
    J Cell Biochem; 2010 Jun; 110(3):609-19. PubMed ID: 20512922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of histone H4 modifications as revealed by a panel of specific monoclonal antibodies.
    Hayashi-Takanaka Y; Maehara K; Harada A; Umehara T; Yokoyama S; Obuse C; Ohkawa Y; Nozaki N; Kimura H
    Chromosome Res; 2015 Dec; 23(4):753-66. PubMed ID: 26343042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cells expressing MRI reporters for the analysis of epigenetics.
    Sugaya K
    Anal Biochem; 2021 Nov; 633():114395. PubMed ID: 34600867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Control of Chromosome Topology and Gene Expression by a Chromatin Modification.
    Bian Q; Anderson EC; Brejc K; Meyer BJ
    Cold Spring Harb Symp Quant Biol; 2017; 82():279-291. PubMed ID: 29472317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TR-FRET cellular assays for interrogating posttranslational modifications of histone H3.
    Machleidt T; Robers MB; Hermanson SB; Dudek JM; Bi K
    J Biomol Screen; 2011 Dec; 16(10):1236-46. PubMed ID: 21972037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live-cell imaging probes to track chromatin modification dynamics.
    Sato Y; Nakao M; Kimura H
    Microscopy (Oxf); 2021 Oct; 70(5):415-422. PubMed ID: 34329472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells.
    Cuomo A; Moretti S; Minucci S; Bonaldi T
    Amino Acids; 2011 Jul; 41(2):387-99. PubMed ID: 20617350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone lysine methylation exhibits a distinct distribution during spermatogenesis in pigs.
    An J; Qin J; Wan Y; Zhang Y; Hu Y; Zhang C; Zeng W
    Theriogenology; 2015 Dec; 84(9):1455-62. PubMed ID: 26409824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically Encoded Fluorescent Indicators to Visualize Protein Phosphorylation in Living Cells.
    Sato M; Umezawa Y
    Methods Mol Biol; 2016; 1360():149-56. PubMed ID: 26501908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration.
    Suzuki M; Takagi C; Miura S; Sakane Y; Suzuki M; Sakuma T; Sakamoto N; Endo T; Kamei Y; Sato Y; Kimura H; Yamamoto T; Ueno N; Suzuki KT
    Genes Cells; 2016 Apr; 21(4):358-69. PubMed ID: 26914410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.