These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27535023)

  • 41. Postnatal persistent infection with classical Swine Fever virus and its immunological implications.
    Muñoz-González S; Ruggli N; Rosell R; Pérez LJ; Frías-Leuporeau MT; Fraile L; Montoya M; Cordoba L; Domingo M; Ehrensperger F; Summerfield A; Ganges L
    PLoS One; 2015; 10(5):e0125692. PubMed ID: 25938664
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Porcine complement regulatory protein CD46 and heparan sulfates are the major factors for classical swine fever virus attachment in vitro.
    Dräger C; Beer M; Blome S
    Arch Virol; 2015 Mar; 160(3):739-46. PubMed ID: 25559665
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A promising multiple-epitope recombinant vaccine against classical swine fever virus.
    Tian H; Hou X; Wu J; Chen Y; Shang Y; Yin S; Zhang K; Liu X
    Vet Immunol Immunopathol; 2014 Jan; 157(1-2):59-64. PubMed ID: 24269058
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two newly developed E(rns)-based ELISAs allow the differentiation of Classical Swine Fever virus-infected from marker-vaccinated animals and the discrimination of pestivirus antibodies.
    Aebischer A; Müller M; Hofmann MA
    Vet Microbiol; 2013 Jan; 161(3-4):274-85. PubMed ID: 22902189
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Replication of classical swine fever virus strains and isolates in different porcine cell lines.
    Grummer B; Fischer S; Depner K; Riebe R; Blome S; Greiser-Wilke I
    Dtsch Tierarztl Wochenschr; 2006 Apr; 113(4):138-42. PubMed ID: 16716048
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Complex Virus-Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview.
    Li S; Wang J; Yang Q; Naveed Anwar M; Yu S; Qiu HJ
    Viruses; 2017 Jul; 9(7):. PubMed ID: 28678154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge.
    Ganges L; Barrera M; Núñez JI; Blanco I; Frias MT; Rodríguez F; Sobrino F
    Vaccine; 2005 May; 23(28):3741-52. PubMed ID: 15882536
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Propagation of classical swine fever virus in vitro circumventing heparan sulfate-adaptation.
    Eymann-Häni R; Leifer I; McCullough KC; Summerfield A; Ruggli N
    J Virol Methods; 2011 Sep; 176(1-2):85-95. PubMed ID: 21703305
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro inhibition of the replication of classical swine fever virus by capsid-targeted virus inactivation.
    Wang YF; Wang ZH; Li Y; Zhang XJ; Sun Y; Li M; Qiu HJ
    Antiviral Res; 2010 Feb; 85(2):422-4. PubMed ID: 19857524
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The N-terminus of classical swine fever virus (CSFV) nonstructural protein 2 modulates viral genome RNA replication.
    Li L; Wu R; Zheng F; Zhao C; Pan Z
    Virus Res; 2015 Dec; 210():90-9. PubMed ID: 26232654
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pathogenicity and kinetics of virus propagation in swine infected with the cytopathogenic classical swine fever virus containing defective interfering particles.
    Aoki H; Ishikawa K; Sekiguchi H; Suzuki S; Fukusho A
    Arch Virol; 2003 Feb; 148(2):297-310. PubMed ID: 12556994
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Annexin 2 is a host protein binding to classical swine fever virus E2 glycoprotein and promoting viral growth in PK-15 cells.
    Yang Z; Shi Z; Guo H; Qu H; Zhang Y; Tu C
    Virus Res; 2015 Apr; 201():16-23. PubMed ID: 25701745
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global transcriptional profiles in peripheral blood mononuclear cell during classical swine fever virus infection.
    Li J; Yu YJ; Feng L; Cai XB; Tang HB; Sun SK; Zhang HY; Liang JJ; Luo TR
    Virus Res; 2010 Mar; 148(1-2):60-70. PubMed ID: 20034523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Porcine cells persistently infected with classical swine fever virus protected from pestivirus-induced cytopathic effect.
    Mittelholzer C; Moser C; Tratschin JD; Hofmann MA
    J Gen Virol; 1998 Dec; 79 ( Pt 12)():2981-7. PubMed ID: 9880012
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro inhibition of classical swine fever virus replication by siRNAs targeting Npro and NS5B genes.
    Xu X; Guo H; Xiao C; Zha Y; Shi Z; Xia X; Tu C
    Antiviral Res; 2008 Jun; 78(3):188-93. PubMed ID: 18262291
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An investigation of classical swine fever virus seroprevalence and risk factors in pigs in East Nusa Tenggara, eastern Indonesia.
    Sawford K; Geong M; Bulu PM; Drayton E; Mahardika GN; Leslie EE; Robertson I; Gde Putra AA; Toribio JA
    Prev Vet Med; 2015 May; 119(3-4):190-202. PubMed ID: 25792334
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry.
    Wang Z; Nie Y; Wang P; Ding M; Deng H
    Virology; 2004 Dec; 330(1):332-41. PubMed ID: 15527858
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Valosin-containing protein (VCP/p97) is responsible for the endocytotic trafficking of classical swine fever virus.
    Sun RC; Hu JH; Li XH; Liu CC; Liu YY; Chen J; Yang YC; Zhou B
    Vet Microbiol; 2022 Sep; 272():109511. PubMed ID: 35849988
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of Classical swine fever virus.
    Zhao JJ; Cheng D; Li N; Sun Y; Shi Z; Zhu QH; Tu C; Tong GZ; Qiu HJ
    Vet Microbiol; 2008 Jan; 126(1-3):1-10. PubMed ID: 17658704
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vaccinia virus and Cowpox virus are not susceptible to the interferon-induced antiviral protein MxA.
    Lorenzo MM; Sanchez-Puig JM; Blasco R
    PLoS One; 2017; 12(7):e0181459. PubMed ID: 28727764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.