These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27535103)

  • 41. Preparation of soft hydrogel nanoparticles with PNIPAm hair and characterization of their temperature-induced aggregation.
    Lv S; Liu L; Yang W
    Langmuir; 2010 Feb; 26(3):2076-82. PubMed ID: 19795850
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Well-aligned open-ended carbon nanotube architectures: an approach for device assembly.
    Zhu L; Sun Y; Hess DW; Wong CP
    Nano Lett; 2006 Feb; 6(2):243-7. PubMed ID: 16464043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of ionic liquid modified magnetic metal-organic frameworks composites for the solid-phase extraction of α-chymotrypsin.
    Wei X; Wang Y; Chen J; Xu P; Zhou Y
    Talanta; 2018 May; 182():484-491. PubMed ID: 29501182
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrophobic Interaction-Induced Coassembly of Homopolymers and Proteins.
    Cai Y; Liu F; Ma X; Yang X; Zhao H
    Langmuir; 2019 Aug; 35(33):10958-10964. PubMed ID: 31355645
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly(ionic liquids) on the surface of multiwall carbon nanotubes.
    Liu M; Pi J; Wang X; Huang R; Du Y; Yu X; Tan W; Liu F; Shea KJ
    Anal Chim Acta; 2016 Aug; 932():29-40. PubMed ID: 27286767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gated ion transport through dense carbon nanotube membranes.
    Yu M; Funke HH; Falconer JL; Noble RD
    J Am Chem Soc; 2010 Jun; 132(24):8285-90. PubMed ID: 20504021
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superparamagnetic Reduction/pH/Temperature Multistimuli-Responsive Nanoparticles for Targeted and Controlled Antitumor Drug Delivery.
    Zeng J; Du P; Liu L; Li J; Tian K; Jia X; Zhao X; Liu P
    Mol Pharm; 2015 Dec; 12(12):4188-99. PubMed ID: 26554495
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Programmable self-assembly of carbon nanotubes assisted by reversible denaturation of a protein.
    Nithiyasri P; Balaji K; Brindha P; Parthasarathy M
    Nanotechnology; 2012 Nov; 23(46):465603. PubMed ID: 23095367
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and characterization of thermo-responsive albumin nanospheres.
    Shen ZY; Ma GH; Dobashi T; Maki Y; Su ZG
    Int J Pharm; 2008 Jan; 346(1-2):133-42. PubMed ID: 17651929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical properties of PNIPAM based hydrogels: A review.
    Haq MA; Su Y; Wang D
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):842-855. PubMed ID: 27770962
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon Nanotubes Reinforced Maleic Anhydride-Modified Xylan-g-Poly(N-isopropylacrylamide) Hydrogel with Multifunctional Properties.
    Liu X; Song T; Chang M; Meng L; Wang X; Sun R; Ren J
    Materials (Basel); 2018 Feb; 11(3):. PubMed ID: 29495611
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile synthesis of hairy core-shell structured magnetic polymer submicrospheres and their adsorption of bovine serum albumin.
    Yan X; Kong J; Yang C; Fu G
    J Colloid Interface Sci; 2015 May; 445():9-15. PubMed ID: 25594881
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temperature dependence of serum protein adsorption in PEGylated PNIPAm microgels.
    Trongsatitkul T; Budhlall BM
    Colloids Surf B Biointerfaces; 2013 Mar; 103():244-52. PubMed ID: 23201744
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of temperature-responsive heterobifunctional block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide).
    You YZ; Oupický D
    Biomacromolecules; 2007 Jan; 8(1):98-105. PubMed ID: 17206794
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel magnetic bovine serum albumin imprinted polymers with a matrix of carbon nanotubes, and their application to protein separation.
    Zhang Z; Yang X; Chen X; Zhang M; Luo L; Peng M; Yao S
    Anal Bioanal Chem; 2011 Nov; 401(9):2855-63. PubMed ID: 21909663
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug.
    Sahoo B; Devi KS; Banerjee R; Maiti TK; Pramanik P; Dhara D
    ACS Appl Mater Interfaces; 2013 May; 5(9):3884-93. PubMed ID: 23551195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery.
    Zhao W; Odelius K; Edlund U; Zhao C; Albertsson AC
    Biomacromolecules; 2015 Aug; 16(8):2522-8. PubMed ID: 26196600
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.
    Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y
    Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy.
    Wydra RJ; Kruse AM; Bae Y; Anderson KW; Hilt JZ
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4660-6. PubMed ID: 24094173
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stimulus-responsiveness and drug release from porous silicon films ATRP-grafted with poly(N-isopropylacrylamide).
    Vasani RB; McInnes SJ; Cole MA; Jani AM; Ellis AV; Voelcker NH
    Langmuir; 2011 Jun; 27(12):7843-53. PubMed ID: 21604788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.