BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 27535429)

  • 1. Remodeling of the postsynaptic plasma membrane during neural development.
    Tulodziecka K; Diaz-Rohrer BB; Farley MM; Chan RB; Di Paolo G; Levental KR; Waxham MN; Levental I
    Mol Biol Cell; 2016 Nov; 27(22):3480-3489. PubMed ID: 27535429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes.
    Liu Q; Yao WD; Suzuki T
    J Neurogenet; 2013 Jun; 27(1-2):43-58. PubMed ID: 23527882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin.
    Futai K; Kim MJ; Hashikawa T; Scheiffele P; Sheng M; Hayashi Y
    Nat Neurosci; 2007 Feb; 10(2):186-95. PubMed ID: 17237775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Molecular mechanism underlying the formation and maintenance of excitatory synapses].
    Kondo S; Okabe S
    Brain Nerve; 2011 Jan; 63(1):51-8. PubMed ID: 21228448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic Control of Synaptic Composition and Function.
    Sinnen BL; Bowen AB; Forte JS; Hiester BG; Crosby KC; Gibson ES; Dell'Acqua ML; Kennedy MJ
    Neuron; 2017 Feb; 93(3):646-660.e5. PubMed ID: 28132827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.
    Michaelis ML; Jiang L; Michaelis EK
    Methods Mol Biol; 2017; 1538():107-119. PubMed ID: 27943187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local palmitoylation cycles define activity-regulated postsynaptic subdomains.
    Fukata Y; Dimitrov A; Boncompain G; Vielemeyer O; Perez F; Fukata M
    J Cell Biol; 2013 Jul; 202(1):145-61. PubMed ID: 23836932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The postsynaptic density and dendritic raft localization of PSD-Zip70, which contains an N-myristoylation sequence and leucine-zipper motifs.
    Konno D; Ko JA; Usui S; Hori K; Maruoka H; Inui M; Fujikado T; Tano Y; Suzuki T; Tohyama K; Sobue K
    J Cell Sci; 2002 Dec; 115(Pt 23):4695-706. PubMed ID: 12415013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells.
    Lushnikova I; Skibo G; Muller D; Nikonenko I
    Neuropharmacology; 2011 Apr; 60(5):757-64. PubMed ID: 21187106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein palmitoylation in neuronal development and synaptic plasticity.
    Fukata Y; Fukata M
    Nat Rev Neurosci; 2010 Mar; 11(3):161-75. PubMed ID: 20168314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palmitoylation regulates glutamate receptor distributions in postsynaptic densities through control of PSD95 conformation and orientation.
    Jeyifous O; Lin EI; Chen X; Antinone SE; Mastro R; Drisdel R; Reese TS; Green WN
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8482-E8491. PubMed ID: 27956638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Crowding within the Postsynaptic Density Can Impede the Escape of Membrane Proteins.
    Li TP; Song Y; MacGillavry HD; Blanpied TA; Raghavachari S
    J Neurosci; 2016 Apr; 36(15):4276-95. PubMed ID: 27076425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-microtubule tubulin-based backbone and subordinate components of postsynaptic density lattices.
    Suzuki T; Terada N; Higashiyama S; Kametani K; Shirai Y; Honda M; Kai T; Li W; Tabuchi K
    Life Sci Alliance; 2021 Jul; 4(7):. PubMed ID: 34006534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of PSD-95 Depalmitoylating Enzymes.
    Yokoi N; Fukata Y; Sekiya A; Murakami T; Kobayashi K; Fukata M
    J Neurosci; 2016 Jun; 36(24):6431-44. PubMed ID: 27307232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstituted Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation and Plasticity.
    Zeng M; Chen X; Guan D; Xu J; Wu H; Tong P; Zhang M
    Cell; 2018 Aug; 174(5):1172-1187.e16. PubMed ID: 30078712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein components of post-synaptic density lattice, a backbone structure for type I excitatory synapses.
    Suzuki T; Kametani K; Guo W; Li W
    J Neurochem; 2018 Feb; 144(4):390-407. PubMed ID: 29134655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity.
    Brigidi GS; Sun Y; Beccano-Kelly D; Pitman K; Mobasser M; Borgland SL; Milnerwood AJ; Bamji SX
    Nat Neurosci; 2014 Apr; 17(4):522-32. PubMed ID: 24562000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal activity drives matching of pre- and postsynaptic function during synapse maturation.
    Kay L; Humphreys L; Eickholt BJ; Burrone J
    Nat Neurosci; 2011 Jun; 14(6):688-90. PubMed ID: 21532580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
    Gryder DS; Castaneda DC; Rogawski MA
    J Neurochem; 2005 Sep; 94(6):1728-38. PubMed ID: 16045445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canonical Wnt Signaling Modulates the Expression of Pre- and Postsynaptic Components in Different Temporal Patterns.
    Martinez M; Torres VI; Vio CP; Inestrosa NC
    Mol Neurobiol; 2020 Mar; 57(3):1389-1404. PubMed ID: 31745835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.