These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 27535466)

  • 1. Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition.
    Hébert-Dufresne L; Grochow JA; Allard A
    Sci Rep; 2016 Aug; 6():31708. PubMed ID: 27535466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal node centrality in complex networks.
    Kim H; Anderson R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026107. PubMed ID: 22463279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ranking of critical species to preserve the functionality of mutualistic networks using the
    García-Algarra J; Pastor JM; Iriondo JM; Galeano J
    PeerJ; 2017; 5():e3321. PubMed ID: 28533969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Onion structure and network robustness.
    Wu ZX; Holme P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026106. PubMed ID: 21929063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degree difference: a simple measure to characterize structural heterogeneity in complex networks.
    Farzam A; Samal A; Jost J
    Sci Rep; 2020 Dec; 10(1):21348. PubMed ID: 33288824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Betweenness centrality for temporal multiplexes.
    Zaoli S; Mazzarisi P; Lillo F
    Sci Rep; 2021 Mar; 11(1):4919. PubMed ID: 33649386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Onion-like networks are both robust and resilient.
    Hayashi Y; Uchiyama N
    Sci Rep; 2018 Jul; 8(1):11241. PubMed ID: 30050045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A graph exploration method for identifying influential spreaders in complex networks.
    Salamanos N; Voudigari E; Yannakoudakis EJ
    Appl Netw Sci; 2017; 2(1):26. PubMed ID: 30443581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalization of core percolation on complex networks.
    Azimi-Tafreshi N; Osat S; Dorogovtsev SN
    Phys Rev E; 2019 Feb; 99(2-1):022312. PubMed ID: 30934300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep graphs-A general framework to represent and analyze heterogeneous complex systems across scales.
    Traxl D; Boers N; Kurths J
    Chaos; 2016 Jun; 26(6):065303. PubMed ID: 27368793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subgraph centrality in complex networks.
    Estrada E; Rodríguez-Velázquez JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056103. PubMed ID: 16089598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyses of antigen dependency networks unveil immune system reorganization between birth and adulthood.
    Madi A; Kenett DY; Bransburg-Zabary S; Merbl Y; Quintana FJ; Boccaletti S; Tauber AI; Cohen IR; Ben-Jacob E
    Chaos; 2011 Mar; 21(1):016109. PubMed ID: 21456851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological network comparison using graphlet degree distribution.
    Przulj N
    Bioinformatics; 2007 Jan; 23(2):e177-83. PubMed ID: 17237089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximal prime subgraph decomposition of Bayesian networks.
    Olesen KG; Madsen AL
    IEEE Trans Syst Man Cybern B Cybern; 2002; 32(1):21-31. PubMed ID: 18238100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring complex networks via topological embedding on surfaces.
    Aste T; Gramatica R; Di Matteo T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036109. PubMed ID: 23030982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting graphlet decomposition to explain the structure of complex networks: the GHuST framework.
    Espejo R; Mestre G; Postigo F; Lumbreras S; Ramos A; Huang T; Bompard E
    Sci Rep; 2020 Jul; 10(1):12884. PubMed ID: 32732972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. s-core network decomposition: a generalization of k-core analysis to weighted networks.
    Eidsaa M; Almaas E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062819. PubMed ID: 24483523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growing optimal scale-free networks via likelihood.
    Small M; Li Y; Stemler T; Judd K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042801. PubMed ID: 25974541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse matrix computations for dynamic network centrality.
    Arrigo F; Higham DJ
    Appl Netw Sci; 2017; 2(1):17. PubMed ID: 30443572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic computation of network statistics via updating schema.
    Sun J; Bagrow JP; Bollt EM; Skufca JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036116. PubMed ID: 19392027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.