BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 27535903)

  • 1. Arterial CO2 Fluctuations Modulate Neuronal Rhythmicity: Implications for MEG and fMRI Studies of Resting-State Networks.
    Driver ID; Whittaker JR; Bright MG; Muthukumaraswamy SD; Murphy K
    J Neurosci; 2016 Aug; 36(33):8541-50. PubMed ID: 27535903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of hypercapnia on resting and stimulus induced MEG signals.
    Hall EL; Driver ID; Croal PL; Francis ST; Gowland PA; Morris PG; Brookes MJ
    Neuroimage; 2011 Oct; 58(4):1034-43. PubMed ID: 21762783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deriving frequency-dependent spatial patterns in MEG-derived resting state sensorimotor network: A novel multiband ICA technique.
    Nugent AC; Luber B; Carver FW; Robinson SE; Coppola R; Zarate CA
    Hum Brain Mapp; 2017 Feb; 38(2):779-791. PubMed ID: 27770478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.
    Wen H; Liu Z
    J Neurosci; 2016 Jun; 36(22):6030-40. PubMed ID: 27251624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting state network connectivity is attenuated by fMRI acoustic noise.
    Pellegrino G; Schuler AL; Arcara G; Di Pino G; Piccione F; Kobayashi E
    Neuroimage; 2022 Feb; 247():118791. PubMed ID: 34920084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of mild carbon dioxide on brain functional homotopy using resting-state fMRI.
    Marshall O; Uh J; Lurie D; Lu H; Milham MP; Ge Y
    Hum Brain Mapp; 2015 Oct; 36(10):3912-21. PubMed ID: 26138728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arterial CO2 effects modulate dynamic functional connectivity in resting-state fMRI.
    Nikolaou F; Orphanidou C; Wise RG; Mitsis GD
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1809-12. PubMed ID: 26736631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.
    Bächinger M; Zerbi V; Moisa M; Polania R; Liu Q; Mantini D; Ruff C; Wenderoth N
    J Neurosci; 2017 May; 37(18):4766-4777. PubMed ID: 28385876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillations, networks, and their development: MEG connectivity changes with age.
    Schäfer CB; Morgan BR; Ye AX; Taylor MJ; Doesburg SM
    Hum Brain Mapp; 2014 Oct; 35(10):5249-61. PubMed ID: 24861830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring alterations in oscillatory brain networks in schizophrenia with resting-state MEG: State-of-the-art and methodological challenges.
    Alamian G; Hincapié AS; Pascarella A; Thiery T; Combrisson E; Saive AL; Martel V; Althukov D; Haesebaert F; Jerbi K
    Clin Neurophysiol; 2017 Sep; 128(9):1719-1736. PubMed ID: 28756348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-related BOLD responses and resting-state functional connectivity during physiological clamping of end-tidal CO(2).
    Madjar C; Gauthier CJ; Bellec P; Birn RM; Brooks JC; Hoge RD
    Neuroimage; 2012 May; 61(1):41-9. PubMed ID: 22418394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring robust functional connectivity from resting-state MEG using amplitude and entropy correlation across frequency bands and temporal scales.
    Godfrey M; Singh KD
    Neuroimage; 2021 Feb; 226():117551. PubMed ID: 33186722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of isocapnic hyperoxia on neurophysiology as measured with MRI and MEG.
    Croal PL; Hall EL; Driver ID; Brookes MJ; Gowland PA; Francis ST
    Neuroimage; 2015 Jan; 105():323-31. PubMed ID: 25462687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest.
    Nakagawa TT; Woolrich M; Luckhoo H; Joensson M; Mohseni H; Kringelbach ML; Jirsa V; Deco G
    Neuroimage; 2014 Feb; 87():383-94. PubMed ID: 24246492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-year reliability of MEG resting-state oscillatory power.
    Lew BJ; Fitzgerald EE; Ott LR; Penhale SH; Wilson TW
    Neuroimage; 2021 Nov; 243():118516. PubMed ID: 34454042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal dynamics of spontaneous MEG activity in brain networks.
    de Pasquale F; Della Penna S; Snyder AZ; Lewis C; Mantini D; Marzetti L; Belardinelli P; Ciancetta L; Pizzella V; Romani GL; Corbetta M
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6040-5. PubMed ID: 20304792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fMRI resting state networks define distinct modes of long-distance interactions in the human brain.
    De Luca M; Beckmann CF; De Stefano N; Matthews PM; Smith SM
    Neuroimage; 2006 Feb; 29(4):1359-67. PubMed ID: 16260155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure.
    Marzetti L; Della Penna S; Snyder AZ; Pizzella V; Nolte G; de Pasquale F; Romani GL; Corbetta M
    Neuroimage; 2013 Oct; 79():172-83. PubMed ID: 23631996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous brain oscillations as neural fingerprints of working memory capacities: A resting-state MEG study.
    Oswald V; Zerouali Y; Boulet-Craig A; Krajinovic M; Laverdière C; Sinnett D; Jolicoeur P; Lippé S; Jerbi K; Robaey P
    Cortex; 2017 Dec; 97():109-124. PubMed ID: 29102813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Group differences in MEG-ICA derived resting state networks: Application to major depressive disorder.
    Nugent AC; Robinson SE; Coppola R; Furey ML; Zarate CA
    Neuroimage; 2015 Sep; 118():1-12. PubMed ID: 26032890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.