These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
612 related articles for article (PubMed ID: 27535918)
1. Extensive Supporting Cell Proliferation and Mitotic Hair Cell Generation by In Vivo Genetic Reprogramming in the Neonatal Mouse Cochlea. Ni W; Lin C; Guo L; Wu J; Chen Y; Chai R; Li W; Li H J Neurosci; 2016 Aug; 36(33):8734-45. PubMed ID: 27535918 [TBL] [Abstract][Full Text] [Related]
2. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea. Ni W; Zeng S; Li W; Chen Y; Zhang S; Tang M; Sun S; Chai R; Li H Oncotarget; 2016 Oct; 7(41):66754-66768. PubMed ID: 27564256 [TBL] [Abstract][Full Text] [Related]
3. In Vivo Cochlear Hair Cell Generation and Survival by Coactivation of β-Catenin and Atoh1. Kuo BR; Baldwin EM; Layman WS; Taketo MM; Zuo J J Neurosci; 2015 Jul; 35(30):10786-98. PubMed ID: 26224861 [TBL] [Abstract][Full Text] [Related]
4. Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Li W; Wu J; Yang J; Sun S; Chai R; Chen ZY; Li H Proc Natl Acad Sci U S A; 2015 Jan; 112(1):166-71. PubMed ID: 25535395 [TBL] [Abstract][Full Text] [Related]
5. Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice. Hu L; Lu J; Chiang H; Wu H; Edge AS; Shi F J Neurosci; 2016 Sep; 36(36):9479-89. PubMed ID: 27605621 [TBL] [Abstract][Full Text] [Related]
6. A dual function for canonical Wnt/β-catenin signaling in the developing mammalian cochlea. Jacques BE; Puligilla C; Weichert RM; Ferrer-Vaquer A; Hadjantonakis AK; Kelley MW; Dabdoub A Development; 2012 Dec; 139(23):4395-404. PubMed ID: 23132246 [TBL] [Abstract][Full Text] [Related]
7. Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles. Wu J; Li W; Lin C; Chen Y; Cheng C; Sun S; Tang M; Chai R; Li H Sci Rep; 2016 Jul; 6():29418. PubMed ID: 27435629 [TBL] [Abstract][Full Text] [Related]
8. Age-related transcriptome changes in Sox2+ supporting cells in the mouse cochlea. Cheng C; Wang Y; Guo L; Lu X; Zhu W; Muhammad W; Zhang L; Lu L; Gao J; Tang M; Chen F; Gao X; Li H; Chai R Stem Cell Res Ther; 2019 Dec; 10(1):365. PubMed ID: 31791390 [TBL] [Abstract][Full Text] [Related]
9. AAV-Net1 facilitates the trans-differentiation of supporting cells into hair cells in the murine cochlea. Zhang L; Fang Y; Tan F; Guo F; Zhang Z; Li N; Sun Q; Qi J; Chai R Cell Mol Life Sci; 2023 Mar; 80(4):86. PubMed ID: 36917323 [TBL] [Abstract][Full Text] [Related]
10. Bmi1 Regulates the Proliferation of Cochlear Supporting Cells Via the Canonical Wnt Signaling Pathway. Lu X; Sun S; Qi J; Li W; Liu L; Zhang Y; Chen Y; Zhang S; Wang L; Miao D; Chai R; Li H Mol Neurobiol; 2017 Mar; 54(2):1326-1339. PubMed ID: 26843109 [TBL] [Abstract][Full Text] [Related]
11. Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea. Zhang S; Zhang Y; Dong Y; Guo L; Zhang Z; Shao B; Qi J; Zhou H; Zhu W; Yan X; Hong G; Zhang L; Zhang X; Tang M; Zhao C; Gao X; Chai R Cell Mol Life Sci; 2020 Apr; 77(7):1401-1419. PubMed ID: 31485717 [TBL] [Abstract][Full Text] [Related]
12. The role of Wnt/β-catenin signaling in proliferation and regeneration of the developing basilar papilla and lateral line. Jacques BE; Montgomery WH; Uribe PM; Yatteau A; Asuncion JD; Resendiz G; Matsui JI; Dabdoub A Dev Neurobiol; 2014 Apr; 74(4):438-56. PubMed ID: 24115534 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional response to Wnt activation regulates the regenerative capacity of the mammalian cochlea. Samarajeewa A; Lenz DR; Xie L; Chiang H; Kirchner R; Mulvaney JF; Edge ASB; Dabdoub A Development; 2018 Nov; 145(23):. PubMed ID: 30389848 [TBL] [Abstract][Full Text] [Related]
14. The crosstalk between the Notch, Wnt, and SHH signaling pathways in regulating the proliferation and regeneration of sensory progenitor cells in the mouse cochlea. Wu J; Li W; Guo L; Zhao L; Sun S; Li H Cell Tissue Res; 2021 Nov; 386(2):281-296. PubMed ID: 34223978 [TBL] [Abstract][Full Text] [Related]
15. Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. McGovern MM; Randle MR; Cuppini CL; Graves KA; Cox BC Development; 2019 Feb; 146(4):. PubMed ID: 30770379 [TBL] [Abstract][Full Text] [Related]
16. In Vivo Interplay between p27 Walters BJ; Coak E; Dearman J; Bailey G; Yamashita T; Kuo B; Zuo J Cell Rep; 2017 Apr; 19(2):307-320. PubMed ID: 28402854 [TBL] [Abstract][Full Text] [Related]
17. Sox2 haploinsufficiency primes regeneration and Wnt responsiveness in the mouse cochlea. Atkinson PJ; Dong Y; Gu S; Liu W; Najarro EH; Udagawa T; Cheng AG J Clin Invest; 2018 Apr; 128(4):1641-1656. PubMed ID: 29553487 [TBL] [Abstract][Full Text] [Related]
18. Spontaneous Hair Cell Regeneration Is Prevented by Increased Notch Signaling in Supporting Cells. McGovern MM; Zhou L; Randle MR; Cox BC Front Cell Neurosci; 2018; 12():120. PubMed ID: 29780306 [TBL] [Abstract][Full Text] [Related]
19. The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential. Żak M; Klis SF; Grolman W Int J Dev Neurosci; 2015 Dec; 47(Pt B):247-58. PubMed ID: 26471908 [TBL] [Abstract][Full Text] [Related]
20. The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Driver EC; Sillers L; Coate TM; Rose MF; Kelley MW Dev Biol; 2013 Apr; 376(1):86-98. PubMed ID: 23318633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]