These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27535992)

  • 1. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple.
    Li M; Li D; Feng F; Zhang S; Ma F; Cheng L
    J Exp Bot; 2016 Sep; 67(17):5145-57. PubMed ID: 27535992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression analysis and functional characterization of apple MdVHP1 gene reveals its involvement in Na(+), malate and soluble sugar accumulation.
    Yao YX; Dong QL; You CX; Zhai H; Hao YJ
    Plant Physiol Biochem; 2011 Oct; 49(10):1201-8. PubMed ID: 21696976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics and Metabolomics Reveal the Regulatory Pathways of Ripening and Quality in Post-Harvest Kiwifruits.
    Tian X; Zhu L; Yang N; Song J; Zhao H; Zhang J; Ma F; Li M
    J Agric Food Chem; 2021 Jan; 69(2):824-835. PubMed ID: 33410682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV-C treatment promotes quality of early ripening apple fruit by regulating malate metabolizing genes during postharvest storage.
    Onik JC; Xie Y; Duan Y; Hu X; Wang Z; Lin Q
    PLoS One; 2019; 14(4):e0215472. PubMed ID: 30990828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrate metabolism in two apple genotypes that differ in malate accumulation.
    Berüter J
    J Plant Physiol; 2004 Sep; 161(9):1011-29. PubMed ID: 15499904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism.
    Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R
    J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iTRAQ-based protein profiling provides insights into the central metabolism changes driving grape berry development and ripening.
    Martínez-Esteso MJ; Vilella-Antón MT; Pedreño MÁ; Valero ML; Bru-Martínez R
    BMC Plant Biol; 2013 Oct; 13():167. PubMed ID: 24152288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative Analyses of Widely Targeted Metabolic Profiling and Transcriptome Data Reveals Molecular Insight into Metabolomic Variations during Apple (
    Xu J; Yan J; Li W; Wang Q; Wang C; Guo J; Geng D; Guan Q; Ma F
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32645908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel Bud Mutation Sequencing Reveals that Fruit Sugar and Acid Metabolism Potentially Influence Stress in
    Zhao J; Shen F; Gao Y; Wang D; Wang K
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31795097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development.
    Li M; Feng F; Cheng L
    PLoS One; 2012; 7(3):e33055. PubMed ID: 22412983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Proteomics-Based Reconstruction and Identification of Metabolic Pathways and Membrane Transport Proteins Related to Sugar Accumulation in Developing Fruits of Pear (Pyrus communis).
    Reuscher S; Fukao Y; Morimoto R; Otagaki S; Oikawa A; Isuzugawa K; Shiratake K
    Plant Cell Physiol; 2016 Mar; 57(3):505-18. PubMed ID: 26755692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of genes associated with soluble sugar and organic acid accumulation in 'Huapi' kumquat (Fortunella crassifolia Swingle) via transcriptome analysis.
    Wei QJ; Ma QL; Zhou GF; Liu X; Ma ZZ; Gu QQ
    J Sci Food Agric; 2021 Aug; 101(10):4321-4331. PubMed ID: 33417244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate.
    Yu JQ; Gu KD; Sun CH; Zhang QY; Wang JH; Ma FF; You CX; Hu DG; Hao YJ
    Plant Biotechnol J; 2021 Feb; 19(2):285-299. PubMed ID: 32757335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A co-expression gene network associated with developmental regulation of apple fruit acidity.
    Bai Y; Dougherty L; Cheng L; Xu K
    Mol Genet Genomics; 2015 Aug; 290(4):1247-63. PubMed ID: 25576355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit.
    Dai ZW; Léon C; Feil R; Lunn JE; Delrot S; Gomès E
    J Exp Bot; 2013 Mar; 64(5):1345-55. PubMed ID: 23364938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage.
    Zhao J; Quan P; Liu H; Li L; Qi S; Zhang M; Zhang B; Li H; Zhao Y; Ma B; Han M; Zhang H; Xing L
    J Agric Food Chem; 2020 Apr; 68(16):4699-4716. PubMed ID: 32078318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of calcium treatment on malate metabolism and γ-aminobutyric acid (GABA) pathway in postharvest apple fruit.
    Han S; Liu H; Han Y; He Y; Nan Y; Qu W; Rao J
    Food Chem; 2021 Jan; 334():127479. PubMed ID: 32688181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive study on the main physiological and biochemical changes occurring during growth and on-tree ripening of two apple varieties with different postharvest behaviour.
    Giné-Bordonaba J; Echeverria G; Duaigües E; Bobo G; Larrigaudière C
    Plant Physiol Biochem; 2019 Feb; 135():601-610. PubMed ID: 30442442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Transcriptomic Profiling to Understand Pre- and Post-Ripening Hormonal Regulations and Anthocyanin Biosynthesis in Early Ripening Apple Fruit.
    Onik JC; Hu X; Lin Q; Wang Z
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30065188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apple ALMT9 Requires a Conserved C-Terminal Domain for Malate Transport Underlying Fruit Acidity.
    Li C; Dougherty L; Coluccio AE; Meng D; El-Sharkawy I; Borejsza-Wysocka E; Liang D; Piñeros MA; Xu K; Cheng L
    Plant Physiol; 2020 Feb; 182(2):992-1006. PubMed ID: 31772076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.