These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
574 related articles for article (PubMed ID: 27536105)
1. Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy. Zhang XF; Gurunathan S Int J Nanomedicine; 2016; 11():3655-75. PubMed ID: 27536105 [TBL] [Abstract][Full Text] [Related]
2. Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Yuan YG; Gurunathan S Int J Nanomedicine; 2017; 12():6537-6558. PubMed ID: 28919753 [TBL] [Abstract][Full Text] [Related]
3. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy. Han JW; Gurunathan S; Choi YJ; Kim JH Int J Nanomedicine; 2017; 12():7529-7549. PubMed ID: 29066898 [TBL] [Abstract][Full Text] [Related]
4. Graphene Oxide-Silver Nanocomposite Enhances Cytotoxic and Apoptotic Potential of Salinomycin in Human Ovarian Cancer Stem Cells (OvCSCs): A Novel Approach for Cancer Therapy. Choi YJ; Gurunathan S; Kim JH Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29494563 [TBL] [Abstract][Full Text] [Related]
5. Cytotoxicity and Transcriptomic Analysis of Silver Nanoparticles in Mouse Embryonic Fibroblast Cells. Gurunathan S; Qasim M; Park C; Yoo H; Choi DY; Song H; Park C; Kim JH; Hong K Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30453526 [TBL] [Abstract][Full Text] [Related]
6. Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma. Yuan YG; Wang YH; Xing HH; Gurunathan S Int J Nanomedicine; 2017; 12():5819-5839. PubMed ID: 28860751 [TBL] [Abstract][Full Text] [Related]
7. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Yuan YG; Peng QL; Gurunathan S Int J Nanomedicine; 2017; 12():6487-6502. PubMed ID: 28919750 [TBL] [Abstract][Full Text] [Related]
9. Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells. Gurunathan S; Kang MH; Kim JH Molecules; 2018 Aug; 23(8):. PubMed ID: 30111752 [TBL] [Abstract][Full Text] [Related]
10. Trichostatin A Enhances the Apoptotic Potential of Palladium Nanoparticles in Human Cervical Cancer Cells. Zhang XF; Yan Q; Shen W; Gurunathan S Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27548148 [TBL] [Abstract][Full Text] [Related]
11. Apoptotic effects of salinomycin on human ovarian cancer cell line (OVCAR-3). Kaplan F; Teksen F Tumour Biol; 2016 Mar; 37(3):3897-903. PubMed ID: 26476539 [TBL] [Abstract][Full Text] [Related]
12. Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3). Zhang XF; Huang FH; Zhang GL; Bai DP; Massimo DF; Huang YF; Gurunathan S Int J Nanomedicine; 2017; 12():7551-7575. PubMed ID: 29075115 [TBL] [Abstract][Full Text] [Related]
13. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Rosarin FS; Arulmozhi V; Nagarajan S; Mirunalini S Asian Pac J Trop Med; 2013 Jan; 6(1):1-10. PubMed ID: 23317879 [TBL] [Abstract][Full Text] [Related]
14. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Salehi S; Shandiz SA; Ghanbar F; Darvish MR; Ardestani MS; Mirzaie A; Jafari M Int J Nanomedicine; 2016; 11():1835-46. PubMed ID: 27199558 [TBL] [Abstract][Full Text] [Related]
15. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Bai DP; Zhang XF; Zhang GL; Huang YF; Gurunathan S Int J Nanomedicine; 2017; 12():6521-6535. PubMed ID: 28919752 [TBL] [Abstract][Full Text] [Related]
16. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells. Choi YJ; Park JH; Han JW; Kim E; Jae-Wook O; Lee SY; Kim JH; Gurunathan S Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27973444 [TBL] [Abstract][Full Text] [Related]
17. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Gurunathan S; Raman J; Abd Malek SN; John PA; Vikineswary S Int J Nanomedicine; 2013; 8():4399-413. PubMed ID: 24265551 [TBL] [Abstract][Full Text] [Related]
18. Novel combination of salinomycin and resveratrol synergistically enhances the anti-proliferative and pro-apoptotic effects on human breast cancer cells. Dewangan J; Tandon D; Srivastava S; Verma AK; Yapuri A; Rath SK Apoptosis; 2017 Oct; 22(10):1246-1259. PubMed ID: 28748373 [TBL] [Abstract][Full Text] [Related]
19. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Farah MA; Ali MA; Chen SM; Li Y; Al-Hemaid FM; Abou-Tarboush FM; Al-Anazi KM; Lee J Colloids Surf B Biointerfaces; 2016 May; 141():158-169. PubMed ID: 26852099 [TBL] [Abstract][Full Text] [Related]
20. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Gurunathan S; Park JH; Han JW; Kim JH Int J Nanomedicine; 2015; 10():4203-22. PubMed ID: 26170659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]