BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27536107)

  • 1. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging.
    D'Hollander A; Mathieu E; Jans H; Vande Velde G; Stakenborg T; Van Dorpe P; Himmelreich U; Lagae L
    Int J Nanomedicine; 2016; 11():3703-14. PubMed ID: 27536107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging.
    Tian F; Conde J; Bao C; Chen Y; Curtin J; Cui D
    Biomaterials; 2016 Nov; 106():87-97. PubMed ID: 27552319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers.
    Zeng L; Pan Y; Wang S; Wang X; Zhao X; Ren W; Lu G; Wu A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16781-91. PubMed ID: 26204589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasive
    Nicolson F; Andreiuk B; Andreou C; Hsu HT; Rudder S; Kircher MF
    Theranostics; 2019; 9(20):5899-5913. PubMed ID: 31534527
    [No Abstract]   [Full Text] [Related]  

  • 5. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.
    Register JK; Fales AM; Wang HN; Norton SJ; Cho EH; Boico A; Pradhan S; Kim J; Schroeder T; Wisniewski NA; Klitzman B; Vo-Dinh T
    Anal Bioanal Chem; 2015 Nov; 407(27):8215-24. PubMed ID: 26337748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer.
    Zhao L; Kim TH; Kim HW; Ahn JC; Kim SY
    Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic-Membrane-Protected Plasmonic Nanostructures as Dual-Modality Contrast Agents for Correlated Surface-Enhanced Raman Scattering and Photoacoustic Detection of Hidden Tumor Lesions.
    Srivastava I; Xue R; Huang HK; Wang Z; Jones J; Vasquez I; Pandit S; Lin L; Zhao S; Flatt K; Gruev V; Chen YS; Nie S
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8554-8569. PubMed ID: 38323816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gd
    Xiao L; Tian X; Harihar S; Li Q; Li L; Welch DR; Zhou A
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():218-225. PubMed ID: 28365452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection.
    Yuan H; Liu Y; Fales AM; Li YL; Liu J; Vo-Dinh T
    Anal Chem; 2013 Jan; 85(1):208-12. PubMed ID: 23194068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics.
    Fales AM; Yuan H; Vo-Dinh T
    Langmuir; 2011 Oct; 27(19):12186-12190. PubMed ID: 21859159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
    Vo-Dinh T; Liu Y; Fales AM; Ngo H; Wang HN; Register JK; Yuan H; Norton SJ; Griffin GD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):17-33. PubMed ID: 25316579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanostars as a colloidal substrate for in-solution SERS measurements using a handheld Raman spectrometer.
    Mahmoud AYF; Rusin CJ; McDermott MT
    Analyst; 2020 Feb; 145(4):1396-1407. PubMed ID: 32016204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan.
    Potara M; Maniu D; Astilean S
    Nanotechnology; 2009 Aug; 20(31):315602. PubMed ID: 19597258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Raman tag-bridged core-shell Au@Cu
    He J; Dong J; Hu Y; Li G; Hu Y
    Nanoscale; 2019 Mar; 11(13):6089-6100. PubMed ID: 30869726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of gold nanostars for the duplex detection of pesticide residues in grapes using SERS.
    Zhai K; Sun L; Nguyen THD; Lin M
    J Food Sci; 2024 Apr; 89(4):2512-2521. PubMed ID: 38380711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold Nanoparticle Coated Carbon Nanotube Ring with Enhanced Raman Scattering and Photothermal Conversion Property for Theranostic Applications.
    Song J; Wang F; Yang X; Ning B; Harp MG; Culp SH; Hu S; Huang P; Nie L; Chen J; Chen X
    J Am Chem Soc; 2016 Jun; 138(22):7005-15. PubMed ID: 27193381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy.
    Schütz M; Steinigeweg D; Salehi M; Kömpe K; Schlücker S
    Chem Commun (Camb); 2011 Apr; 47(14):4216-8. PubMed ID: 21359379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Enhanced Raman Probes Based on Gold Nanomaterials for in vivo Diagnosis and Imaging.
    Wen C; Wang L; Liu L; Shen XC; Chen H
    Chem Asian J; 2022 Apr; 17(7):e202200014. PubMed ID: 35178878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.