These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 27536214)

  • 21. Multiple Kernel Based Region Importance Learning for Neural Classification of Gait States from EEG Signals.
    Zhang Y; Prasad S; Kilicarslan A; Contreras-Vidal JL
    Front Neurosci; 2017; 11():170. PubMed ID: 28420954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of Neuromuscular Primitives from EEG Slow Cortical Potentials in Incomplete Spinal Cord Injury Individuals for a New Class of Brain-Machine Interfaces.
    Úbeda A; Azorín JM; Farina D; Sartori M
    Front Comput Neurosci; 2018; 12():3. PubMed ID: 29422842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors.
    Bhagat NA; Venkatakrishnan A; Abibullaev B; Artz EJ; Yozbatiran N; Blank AA; French J; Karmonik C; Grossman RG; O'Malley MK; Francisco GE; Contreras-Vidal JL
    Front Neurosci; 2016; 10():122. PubMed ID: 27065787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke.
    Contreras-Vidal JL; Bortole M; Zhu F; Nathan K; Venkatakrishnan A; Francisco GE; Soto R; Pons JL
    Am J Phys Med Rehabil; 2018 Aug; 97(8):541-550. PubMed ID: 29481376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of a brain-machine interface for reducing false activations of a lower-limb exoskeleton based on error related potential.
    Soriano-Segura P; Ortiz M; Iáñez E; Azorín JM
    Comput Methods Programs Biomed; 2024 Oct; 255():108332. PubMed ID: 39053352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton.
    Ortiz M; Ferrero L; Iáñez E; Azorín JM; Contreras-Vidal JL
    Front Bioeng Biotechnol; 2020; 8():735. PubMed ID: 33014987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces.
    Li Z; Li J; Zhao S; Yuan Y; Kang Y; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3558-3571. PubMed ID: 30346293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decoding Brain Signals to Classify Gait Direction Anticipation.
    Vaghei Y; Park EJ; Arzanpour S
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():309-312. PubMed ID: 36086221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR
    J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing user experience with BMI-assisted exoskeleton in patients with spinal cord injury.
    Ferrero L; Quiles V; Ortiz M; Ianez E; Megia A; Gil-Agudo AM; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4064-4067. PubMed ID: 36086336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: A case study.
    Tanabe S; Koyama S; Saitoh E; Hirano S; Yatsuya K; Tsunoda T; Katoh M; Gotoh T; Furumoto A
    NeuroRehabilitation; 2017; 41(1):85-95. PubMed ID: 28527225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton.
    Kilicarslan A; Prasad S; Grossman RG; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5606-9. PubMed ID: 24111008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients.
    Jansen O; Grasmuecke D; Meindl RC; Tegenthoff M; Schwenkreis P; Sczesny-Kaiser M; Wessling M; Schildhauer TA; Fisahn C; Aach M
    World Neurosurg; 2018 Feb; 110():e73-e78. PubMed ID: 29081392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of Error Potentials generated by a lower limb exoskeleton feedback in a BMI for gait control
    Soriano-Segura P; Ferrero L; Ortiz M; Ianez E; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton.
    Grimm F; Walter A; Spüler M; Naros G; Rosenstiel W; Gharabaghi A
    Front Neurosci; 2016; 10():367. PubMed ID: 27555805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-invasive, Brain-controlled Functional Electrical Stimulation for Locomotion Rehabilitation in Individuals with Paraplegia.
    Selfslagh A; Shokur S; Campos DSF; Donati ARC; Almeida S; Yamauti SY; Coelho DB; Bouri M; Nicolelis MAL
    Sci Rep; 2019 May; 9(1):6782. PubMed ID: 31043637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury.
    Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF
    Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463
    [No Abstract]   [Full Text] [Related]  

  • 40. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration.
    Benabid AL; Costecalde T; Eliseyev A; Charvet G; Verney A; Karakas S; Foerster M; Lambert A; Morinière B; Abroug N; Schaeffer MC; Moly A; Sauter-Starace F; Ratel D; Moro C; Torres-Martinez N; Langar L; Oddoux M; Polosan M; Pezzani S; Auboiroux V; Aksenova T; Mestais C; Chabardes S
    Lancet Neurol; 2019 Dec; 18(12):1112-1122. PubMed ID: 31587955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.