These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 27536270)

  • 41. High hydrostatic pressure-induced inactivation of bacterial spores.
    Sarker MR; Akhtar S; Torres JA; Paredes-Sabja D
    Crit Rev Microbiol; 2015 Feb; 41(1):18-26. PubMed ID: 23631742
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High hydrostatic pressure inactivation of vegetative microorganisms, aerobic and anaerobic spores in pork Marengo, a low acidic particulate food product.
    Moerman F
    Meat Sci; 2005 Feb; 69(2):225-32. PubMed ID: 22062812
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Principles and Applications of Non-Thermal Technologies for Meat Decontamination.
    Lee Y; Yoon Y
    Food Sci Anim Resour; 2024 Jan; 44(1):19-38. PubMed ID: 38229860
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.
    Qi PX; Ren D; Xiao Y; Tomasula PM
    J Dairy Sci; 2015 May; 98(5):2884-97. PubMed ID: 25704975
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Continuous Versus Discontinuous Ultra-High-Pressure Systems for Food Sterilization with Focus on Ultra-High-Pressure Homogenization and High-Pressure Thermal Sterilization: A Review.
    Sevenich R; Mathys A
    Compr Rev Food Sci Food Saf; 2018 May; 17(3):646-662. PubMed ID: 33350130
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices using high pressure homogenization and nisin.
    Pathanibul P; Taylor TM; Davidson PM; Harte F
    Int J Food Microbiol; 2009 Feb; 129(3):316-20. PubMed ID: 19167772
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Landmarks in the historical development of twenty first century food processing technologies.
    Misra NN; Koubaa M; Roohinejad S; Juliano P; Alpas H; Inácio RS; Saraiva JA; Barba FJ
    Food Res Int; 2017 Jul; 97():318-339. PubMed ID: 28578057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of the high pressure homogenization on the viability of yeast cell and volatile components in non-pasteurized rice wine.
    Lee MG; Ham TH; Song SH; Chung DH; Yoon WB
    Food Sci Biotechnol; 2016; 25(4):1073-1080. PubMed ID: 30263377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-pressure processing--effects on microbial food safety and food quality.
    Considine KM; Kelly AL; Fitzgerald GF; Hill C; Sleator RD
    FEMS Microbiol Lett; 2008 Apr; 281(1):1-9. PubMed ID: 18279335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial antagonists to food-borne pathogens and biocontrol.
    Gálvez A; Abriouel H; Benomar N; Lucas R
    Curr Opin Biotechnol; 2010 Apr; 21(2):142-8. PubMed ID: 20149633
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermal and Modern, Non-Thermal Method Induction as a Factor of Modification of Inulin Hydrogel Properties.
    Florowska A; Florowski T; Kruszewski B; Janiszewska-Turak E; Bykowska W; Ksibi N
    Foods; 2023 Nov; 12(22):. PubMed ID: 38002211
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Opportunities and challenges in application of ultrasound in food processing.
    Rastogi NK
    Crit Rev Food Sci Nutr; 2011 Sep; 51(8):705-22. PubMed ID: 21838554
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Applications of novel processing technologies to enhance the safety and bioactivity of milk.
    Soni A; Samuelsson LM; Loveday SM; Gupta TB
    Compr Rev Food Sci Food Saf; 2021 Sep; 20(5):4652-4677. PubMed ID: 34427048
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies, part 1: high-pressure processing.
    Terefe NS; Buckow R; Versteeg C
    Crit Rev Food Sci Nutr; 2014; 54(1):24-63. PubMed ID: 24188232
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality.
    Peng J; Tang J; Barrett DM; Sablani SS; Anderson N; Powers JR
    Crit Rev Food Sci Nutr; 2017 Sep; 57(14):2970-2995. PubMed ID: 26529500
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advancements in Non-Thermal Processing Technologies for Enhancing Safety and Quality of Infant and Baby Food Products: A Review.
    Pasdar N; Mostashari P; Greiner R; Khelfa A; Rashidinejad A; Eshpari H; Vale JM; Gharibzahedi SMT; Roohinejad S
    Foods; 2024 Aug; 13(17):. PubMed ID: 39272425
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nonthermal preservation of foods using combined processing techniques.
    Raso J; Barbosa-Cánovas GV
    Crit Rev Food Sci Nutr; 2003; 43(3):265-85. PubMed ID: 12822673
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations.
    Rozali SNM; Milani EA; Deed RC; Silva FVM
    Int J Food Microbiol; 2017 Dec; 263():17-25. PubMed ID: 29024903
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of fat content, pasteurization method, homogenization pressure, and storage time on the mechanical and sensory properties of bovine milk.
    Li Y; Joyner HS; Carter BG; Drake MA
    J Dairy Sci; 2018 Apr; 101(4):2941-2955. PubMed ID: 29398020
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High hydrostatic pressure technology in dairy processing: a review.
    Chawla R; Patil GR; Singh AK
    J Food Sci Technol; 2011 Jun; 48(3):260-8. PubMed ID: 23572744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.