These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 27536287)
41. Production of aroma compounds by cryotolerant Saccharomyces species and hybrids at low and moderate fermentation temperatures. Gamero A; Tronchoni J; Querol A; Belloch C J Appl Microbiol; 2013 May; 114(5):1405-14. PubMed ID: 23294204 [TBL] [Abstract][Full Text] [Related]
42. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae. Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706 [TBL] [Abstract][Full Text] [Related]
43. Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii in winemaking conditions. Gamero A; Belloch C; Querol A Microb Cell Fact; 2015 Sep; 14():128. PubMed ID: 26336982 [TBL] [Abstract][Full Text] [Related]
44. The Antarctic yeast Candida sake: Understanding cold metabolism impact on wine. Ballester-Tomás L; Prieto JA; Gil JV; Baeza M; Randez-Gil F Int J Food Microbiol; 2017 Mar; 245():59-65. PubMed ID: 28131961 [TBL] [Abstract][Full Text] [Related]
45. Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1. Penacho V; Blondin B; Valero E; Gonzalez R Biotechnol Prog; 2012; 28(2):327-36. PubMed ID: 22065482 [TBL] [Abstract][Full Text] [Related]
46. Selection of yeast starter culture strains for the production of marula fruit wines and distillates. Fundira M; Blom M; Pretorius IS; van Rensburg P J Agric Food Chem; 2002 Mar; 50(6):1535-42. PubMed ID: 11879033 [TBL] [Abstract][Full Text] [Related]
47. Direct stamp of technology or origin on the genotypic and phenotypic variation of indigenous Saccharomyces cerevisiae population in a natural model of boiled grape juice fermentation into traditional Msalais wine in China. Zhu LX; Wang GQ; Xue JL; Gou DQ; Duan CQ FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 27993913 [TBL] [Abstract][Full Text] [Related]
48. Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae. Azzolini M; Tosi E; Lorenzini M; Finato F; Zapparoli G World J Microbiol Biotechnol; 2015 Feb; 31(2):277-93. PubMed ID: 25388474 [TBL] [Abstract][Full Text] [Related]
49. Influence of fermentation temperature on volatile thiols concentrations in Sauvignon blanc wines. Masneuf-Pomarède I; Mansour C; Murat ML; Tominaga T; Dubourdieu D Int J Food Microbiol; 2006 May; 108(3):385-90. PubMed ID: 16524635 [TBL] [Abstract][Full Text] [Related]
50. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism. Alexandre H Int J Food Microbiol; 2013 Oct; 167(2):269-75. PubMed ID: 24141073 [TBL] [Abstract][Full Text] [Related]
51. Influence of a Saccharomyces cerevisiae selected strain in the volatile composition of rosé wines. Evolution during fermentation. Fraile P; Garrido J; Ancín C J Agric Food Chem; 2000 May; 48(5):1789-98. PubMed ID: 10820096 [TBL] [Abstract][Full Text] [Related]
52. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum. Varela C; Barker A; Tran T; Borneman A; Curtin C Int J Food Microbiol; 2017 Jul; 252():1-9. PubMed ID: 28436828 [TBL] [Abstract][Full Text] [Related]
53. Effect of sequential fermentations and grape cultivars on volatile compounds and sensory profiles of Danish wines. Liu J; Arneborg N; Toldam-Andersen TB; Petersen MA; Bredie WL J Sci Food Agric; 2017 Aug; 97(11):3594-3602. PubMed ID: 28098345 [TBL] [Abstract][Full Text] [Related]
54. Wine aroma evolution throughout alcoholic fermentation sequentially inoculated with non- Saccharomyces/Saccharomyces yeasts. Escribano-Viana R; González-Arenzana L; Portu J; Garijo P; López-Alfaro I; López R; Santamaría P; Gutiérrez AR Food Res Int; 2018 Oct; 112():17-24. PubMed ID: 30131125 [TBL] [Abstract][Full Text] [Related]
55. Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. Marullo P; Mansour C; Dufour M; Albertin W; Sicard D; Bely M; Dubourdieu D FEMS Yeast Res; 2009 Dec; 9(8):1148-60. PubMed ID: 19758333 [TBL] [Abstract][Full Text] [Related]
56. Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts. Harsch MJ; Gardner RC Appl Microbiol Biotechnol; 2013 Jan; 97(1):223-35. PubMed ID: 22684328 [TBL] [Abstract][Full Text] [Related]
57. Evolution of Volatile Sulfur Compounds during Wine Fermentation. Kinzurik MI; Herbst-Johnstone M; Gardner RC; Fedrizzi B J Agric Food Chem; 2015 Sep; 63(36):8017-24. PubMed ID: 26271945 [TBL] [Abstract][Full Text] [Related]
58. Improving the Cryotolerance of Wine Yeast by Interspecific Hybridization in the Genus García-Ríos E; Guillén A; de la Cerda R; Pérez-Través L; Querol A; Guillamón JM Front Microbiol; 2018; 9():3232. PubMed ID: 30671041 [TBL] [Abstract][Full Text] [Related]
59. Metabolic profiling as a tool for revealing Saccharomyces interactions during wine fermentation. Howell KS; Cozzolino D; Bartowsky EJ; Fleet GH; Henschke PA FEMS Yeast Res; 2006 Jan; 6(1):91-101. PubMed ID: 16423074 [TBL] [Abstract][Full Text] [Related]
60. A comparison of the performance of natural hybrids Saccharomyces cerevisiae × Saccharomyces kudriavzevii at low temperatures reveals the crucial role of their S. kudriavzevii genomic contribution. Ortiz-Tovar G; Pérez-Torrado R; Adam AC; Barrio E; Querol A Int J Food Microbiol; 2018 Jun; 274():12-19. PubMed ID: 29574243 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]