BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27537202)

  • 1. Uncovering the Sensitivity of Amide-II Vibration to Peptide-Ion Interactions.
    Zhao J; Wang J
    J Phys Chem B; 2016 Sep; 120(36):9590-8. PubMed ID: 27537202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between metal cation and unnatural peptide backbone mediated by polarized water molecules: study of infrared spectroscopy and computations.
    Shi J; Wang J
    J Phys Chem B; 2014 Oct; 118(43):12336-47. PubMed ID: 25275795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural dynamics of N-ethylpropionamide clusters examined by nonlinear infrared spectroscopy.
    Wang J; Yang F; Shi J; Zhao J
    J Chem Phys; 2015 Nov; 143(18):185102. PubMed ID: 26567687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amide I Vibrational Properties Affected by Hydrogen Bonding Out-of-Plane of the Peptide Group.
    Torii H
    J Phys Chem Lett; 2015 Feb; 6(4):727-33. PubMed ID: 26262494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectively Probing the Structures and Dynamics of β-Peptide Aggregates Using the Amide-A Vibrational Marker.
    Wang J; Yang F; Zhao J
    J Phys Chem B; 2015 Dec; 119(50):15451-9. PubMed ID: 26601794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Anionic Effect on Water Structure and Indirect Anionic Effect on Peptide Backbone Hydration State Revealed by Thin-Layer Infrared Spectroscopy.
    Zhao J; Wang J
    J Phys Chem B; 2018 Jan; 122(1):68-76. PubMed ID: 29232512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hofmeister anionic effects on hydration electric fields around water and peptide.
    Kim H; Lee H; Lee G; Kim H; Cho M
    J Chem Phys; 2012 Mar; 136(12):124501. PubMed ID: 22462868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation and Metal Cation Binding of Zwitterionic Alanine Tripeptide in Saline Solutions by Infrared Vibrational Spectroscopy and Molecular Dynamics Simulations.
    Zhao J; Dong T; Yu P; Wang J
    J Phys Chem B; 2022 Jan; 126(1):161-173. PubMed ID: 34968072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amide I two-dimensional infrared spectroscopy of proteins.
    Ganim Z; Chung HS; Smith AW; Deflores LP; Jones KC; Tokmakoff A
    Acc Chem Res; 2008 Mar; 41(3):432-41. PubMed ID: 18288813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward detecting the formation of a single helical turn by 2D IR cross peaks between the amide-I and -II modes.
    Maekawa H; De Poli M; Moretto A; Toniolo C; Ge NH
    J Phys Chem B; 2009 Aug; 113(34):11775-86. PubMed ID: 19642666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations.
    Cai K; Zheng X; Du F
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():150-157. PubMed ID: 28448953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using 2D-IR Spectroscopy to Measure the Structure, Dynamics, and Intermolecular Interactions of Proteins in H
    Hunt NT
    Acc Chem Res; 2024 Mar; 57(5):685-692. PubMed ID: 38364823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dynamics of N-propionyl-D-glucosamine probed by infrared spectroscopies and ab initio computations.
    Han C; Zhao J; Yang F; Wang J
    J Phys Chem A; 2013 Jul; 117(29):6105-15. PubMed ID: 23631509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV resonance Raman investigation of the aqueous solvation dependence of primary amide vibrations.
    Punihaole D; Jakubek RS; Dahlburg EM; Hong Z; Myshakina NS; Geib S; Asher SA
    J Phys Chem B; 2015 Mar; 119(10):3931-9. PubMed ID: 25667957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General Applicable Frequency Map for the Amide-I Mode in β-Peptides.
    Cai K; Du F; Zheng X; Liu J; Zheng R; Zhao J; Wang J
    J Phys Chem B; 2016 Feb; 120(6):1069-79. PubMed ID: 26824578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear and two-dimensional infrared spectroscopic study of the amide I and II modes in fully extended peptide chains.
    Maekawa H; Ballano G; Toniolo C; Ge NH
    J Phys Chem B; 2011 May; 115(18):5168-82. PubMed ID: 20845957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.
    Pazderková M; Profant V; Hodačová J; Sebestík J; Pazderka T; Novotná P; Urbanová M; Safařík M; Buděšínský M; Tichý M; Bednárová L; Baumruk V; Maloň P
    J Phys Chem B; 2013 Aug; 117(33):9626-42. PubMed ID: 23866013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of Annular Protofibrillar Assembly by Cysteine Tripeptide: Unraveling the Interactions with NMR, FTIR, and Molecular Dynamics.
    Banerji B; Chatterjee M; Pal U; Maiti NC
    J Phys Chem B; 2017 Jul; 121(26):6367-6379. PubMed ID: 28593765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Study of Helical and Helix-Hinge-Helix Conformations of an Anti-Microbial Peptide in Solution by Molecular Dynamics and Vibrational Analysis.
    Joodaki F; Martin LM; Greenfield ML
    J Phys Chem B; 2021 Jan; 125(3):703-721. PubMed ID: 33464100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Far-infrared amide IV-VI spectroscopy of isolated 2- and 4-Methylacetanilide.
    Yatsyna V; Bakker DJ; Feifel R; Rijs AM; Zhaunerchyk V
    J Chem Phys; 2016 Sep; 145(10):104309. PubMed ID: 27634262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.