BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 27537257)

  • 1. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells.
    Cheng C; Nowak RB; Biswas SK; Lo WK; FitzGerald PG; Fowler VM
    Invest Ophthalmol Vis Sci; 2016 Aug; 57(10):4084-99. PubMed ID: 27537257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tropomodulin1 is required for membrane skeleton organization and hexagonal geometry of fiber cells in the mouse lens.
    Nowak RB; Fischer RS; Zoltoski RK; Kuszak JR; Fowler VM
    J Cell Biol; 2009 Sep; 186(6):915-28. PubMed ID: 19752024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens.
    Gokhin DS; Nowak RB; Kim NE; Arnett EE; Chen AC; Sah RL; Clark JI; Fowler VM
    PLoS One; 2012; 7(11):e48734. PubMed ID: 23144950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakdown of interlocking domains may contribute to formation of membranous globules and lens opacity in ephrin-A5(-/-) mice.
    Biswas S; Son A; Yu Q; Zhou R; Lo WK
    Exp Eye Res; 2016 Apr; 145():130-139. PubMed ID: 26643403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tropomodulin 1-null mice have a mild spherocytic elliptocytosis with appearance of tropomodulin 3 in red blood cells and disruption of the membrane skeleton.
    Moyer JD; Nowak RB; Kim NE; Larkin SK; Peters LL; Hartwig J; Kuypers FA; Fowler VM
    Blood; 2010 Oct; 116(14):2590-9. PubMed ID: 20585041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tropomodulin 1 constrains fiber cell geometry during elongation and maturation in the lens cortex.
    Nowak RB; Fowler VM
    J Histochem Cytochem; 2012 Jun; 60(6):414-27. PubMed ID: 22473940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells.
    Cheng C; Nowak RB; Gao J; Sun X; Biswas SK; Lo WK; Mathias RT; Fowler VM
    Am J Physiol Cell Physiol; 2015 May; 308(10):C835-47. PubMed ID: 25740157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythroid differentiation in mouse erythroleukemia cells depends on Tmod3-mediated regulation of actin filament assembly into the erythroblast membrane skeleton.
    Ghosh A; Coffin M; West R; Fowler VM
    FASEB J; 2022 Mar; 36(3):e22220. PubMed ID: 35195928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization and remodeling of the membrane skeleton during lens fiber cell differentiation and maturation.
    Lee A; Fischer RS; Fowler VM
    Dev Dyn; 2000 Mar; 217(3):257-70. PubMed ID: 10741420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tropomyosin 3.5 protects the F-actin networks required for tissue biomechanical properties.
    Cheng C; Nowak RB; Amadeo MB; Biswas SK; Lo WK; Fowler VM
    J Cell Sci; 2018 Nov; 131(23):. PubMed ID: 30333143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tropomodulin and tropomyosin mediate lens cell actin cytoskeleton reorganization in vitro.
    Fischer RS; Lee A; Fowler VM
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):166-74. PubMed ID: 10634617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of tropomyosin-binding properties of tropomodulin-1 affects its capping ability and localization in skeletal myocytes.
    Moroz NA; Novak SM; Azevedo R; Colpan M; Uversky VN; Gregorio CC; Kostyukova AS
    J Biol Chem; 2013 Feb; 288(7):4899-907. PubMed ID: 23271735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional effects of mutations in the tropomyosin-binding sites of tropomodulin1 and tropomodulin3.
    Lewis RA; Yamashiro S; Gokhin DS; Fowler VM
    Cytoskeleton (Hoboken); 2014 Jul; 71(7):395-411. PubMed ID: 24922351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of clathrin, AP-2 adaptor and actin cytoskeleton with developing interlocking membrane domains of lens fibre cells.
    Zhou CJ; Lo WK
    Exp Eye Res; 2003 Oct; 77(4):423-32. PubMed ID: 12957142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tropomodulin Isoform-Specific Regulation of Dendrite Development and Synapse Formation.
    Omotade OF; Rui Y; Lei W; Yu K; Hartzell HC; Fowler VM; Zheng JQ
    J Neurosci; 2018 Nov; 38(48):10271-10285. PubMed ID: 30301754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tropomodulin isoforms regulate thin filament pointed-end capping and skeletal muscle physiology.
    Gokhin DS; Lewis RA; McKeown CR; Nowak RB; Kim NE; Littlefield RS; Lieber RL; Fowler VM
    J Cell Biol; 2010 Apr; 189(1):95-109. PubMed ID: 20368620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tropomodulin contains two actin filament pointed end-capping domains.
    Fowler VM; Greenfield NJ; Moyer J
    J Biol Chem; 2003 Oct; 278(41):40000-9. PubMed ID: 12860976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle.
    Gokhin DS; Tierney MT; Sui Z; Sacco A; Fowler VM
    Mol Biol Cell; 2014 Mar; 25(6):852-65. PubMed ID: 24430868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aquaporin-0 targets interlocking domains to control the integrity and transparency of the eye lens.
    Lo WK; Biswas SK; Brako L; Shiels A; Gu S; Jiang JX
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1202-12. PubMed ID: 24458158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recessive TMOD1 mutation causes childhood cardiomyopathy.
    Vasilescu C; Colpan M; Ojala TH; Manninen T; Mutka A; Ylänen K; Rahkonen O; Poutanen T; Martelius L; Kumari R; Hinterding H; Brilhante V; Ojanen S; Lappalainen P; Koskenvuo J; Carroll CJ; Fowler VM; Gregorio CC; Suomalainen A
    Commun Biol; 2024 Jan; 7(1):7. PubMed ID: 38168645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.