These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 27537833)
21. Surface Modification of TiO2 Photoanodes with Fluorinated Self-Assembled Monolayers for Highly Efficient Dye-Sensitized Solar Cells. Wooh S; Kim TY; Song D; Lee YG; Lee TK; Bergmann VW; Weber SA; Bisquert J; Kang YS; Char K ACS Appl Mater Interfaces; 2015 Nov; 7(46):25741-7. PubMed ID: 26506252 [TBL] [Abstract][Full Text] [Related]
22. Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells. Vega-Poot AG; Macías-Montero M; Idígoras J; Borrás A; Barranco A; Gonzalez-Elipe AR; Lizama-Tzec FI; Oskam G; Anta JA Chemphyschem; 2014 Apr; 15(6):1088-97. PubMed ID: 24729526 [TBL] [Abstract][Full Text] [Related]
23. Multi-functionality of macroporous TiO2 spheres in dye-sensitized and hybrid heterojunction solar cells. Veerappan G; Jung DW; Kwon J; Choi JM; Heo N; Yi GR; Park JH Langmuir; 2014 Mar; 30(11):3010-8. PubMed ID: 24571409 [TBL] [Abstract][Full Text] [Related]
24. Cu2ZnSnS4 Nanoparticle Sensitized Metal-Organic Framework Derived Mesoporous TiO2 as Photoanodes for High-Performance Dye-Sensitized Solar Cells. Tang R; Xie Z; Zhou S; Zhang Y; Yuan Z; Zhang L; Yin L ACS Appl Mater Interfaces; 2016 Aug; 8(34):22201-12. PubMed ID: 27494761 [TBL] [Abstract][Full Text] [Related]
25. Impact of improvements in mesoporous titania layers on ultrafast electron transfer dynamics in perovskite and dye-sensitized solar cells. Pydzińska-Białek K; Glinka A; Drushliak V; Nowaczyk G; Florczak P; Ziółek M Phys Chem Chem Phys; 2020 Oct; 22(38):21947-21960. PubMed ID: 32974628 [TBL] [Abstract][Full Text] [Related]
26. Improving Performance via Blocking Layers in Dye-Sensitized Solar Cells Based on Nanowire Photoanodes. Li L; Xu C; Zhao Y; Chen S; Ziegler KJ ACS Appl Mater Interfaces; 2015 Jun; 7(23):12824-31. PubMed ID: 26010178 [TBL] [Abstract][Full Text] [Related]
27. Synergistic effects of the aspect ratio of TiO2 nanowires and multi-walled carbon nanotube embedment for enhancing photovoltaic performance of dye-sensitized solar cells. Ahn JY; Kim JH; Moon KJ; Park SD; Kim SH Nanoscale; 2013 Aug; 5(15):6842-50. PubMed ID: 23771100 [TBL] [Abstract][Full Text] [Related]
28. Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Hara K; Dan-oh Y; Kasada C; Ohga Y; Shinpo A; Suga S; Sayama K; Arakawa H Langmuir; 2004 May; 20(10):4205-10. PubMed ID: 15969418 [TBL] [Abstract][Full Text] [Related]
29. Preparation and characterization of TiO2 barrier layers for dye-sensitized solar cells. Zheng Y; Klankowski S; Yang Y; Li J ACS Appl Mater Interfaces; 2014 Jul; 6(13):10679-86. PubMed ID: 24927111 [TBL] [Abstract][Full Text] [Related]
30. Solar cells with PbS quantum dot sensitized TiO Kokal RK; Deepa M; Kalluri A; Singh S; Macwan I; Patra PK; Gilarde J Phys Chem Chem Phys; 2017 Oct; 19(38):26330-26345. PubMed ID: 28936513 [TBL] [Abstract][Full Text] [Related]
31. Diffusion Length in Nanoporous Photoelectrodes of Dye-Sensitized Solar Cells under Operating Conditions Measured by Photocurrent Microscopy. Park JK; Kang JC; Kim SY; Son BH; Park JY; Lee S; Ahn YH J Phys Chem Lett; 2012 Dec; 3(23):3632-8. PubMed ID: 26290998 [TBL] [Abstract][Full Text] [Related]
32. TiO2-grafted multi-walled carbon nanotubes for dye-sensitized solar cells. Hwang YH; Kim H; Zong K; Pyo M J Nanosci Nanotechnol; 2012 May; 12(5):4127-31. PubMed ID: 22852357 [TBL] [Abstract][Full Text] [Related]
33. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells. Selopal GS; Wu HP; Lu J; Chang YC; Wang M; Vomiero A; Concina I; Diau EW Sci Rep; 2016 Jan; 6():18756. PubMed ID: 26738698 [TBL] [Abstract][Full Text] [Related]
34. Inkjet printed highly porous TiO2 films for improved electrical properties of photoanode. Bernacka-Wojcik I; Wojcik PJ; Aguas H; Fortunato E; Martins R J Colloid Interface Sci; 2016 Mar; 465():208-14. PubMed ID: 26674237 [TBL] [Abstract][Full Text] [Related]
35. Modification of TiO₂ electrode with organic silane interposed layer for high-performance of dye-sensitized solar cells. Sewvandi GA; Tao Z; Kusunose T; Tanaka Y; Nakanishi S; Feng Q ACS Appl Mater Interfaces; 2014 Apr; 6(8):5818-26. PubMed ID: 24684283 [TBL] [Abstract][Full Text] [Related]
36. Mg(OOCCH(3))(2) as an electrolyte additive for quasi-solid dye-sensitized solar cells: with the purpose of enhancing both the photovoltage and photocurrent by modifying the TiO(2)/dye/electrolyte interfaces. Zhu Y; Shi Y; Wang L; Gao R; Ma B; Geng Y; Qiu Y Phys Chem Chem Phys; 2010 Dec; 12(45):15001-6. PubMed ID: 20953482 [TBL] [Abstract][Full Text] [Related]
37. Role of nanochemical environments in porous TiO2 in photocurrent efficiency and degradation in dye sensitized solar cells. Junghänel M; Tributsch H J Phys Chem B; 2005 Dec; 109(48):22876-83. PubMed ID: 16853980 [TBL] [Abstract][Full Text] [Related]
38. Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells. Ogomi Y; Kukihara K; Qing S; Toyoda T; Yoshino K; Pandey S; Momose H; Hayase S Chemphyschem; 2014 Apr; 15(6):1062-9. PubMed ID: 24604610 [TBL] [Abstract][Full Text] [Related]
39. Mesoporous carbon-TiO₂ beads with nanotextured surfaces as photoanodes in dye-sensitized solar cells. Quan LN; Jang YH; Jang YJ; Kim J; Lee W; Moon JH; Kim DH ChemSusChem; 2014 Sep; 7(9):2590-6. PubMed ID: 25098396 [TBL] [Abstract][Full Text] [Related]
40. One-dimensional and (001) facetted nanostructured TiO2 photoanodes for dye-sensitized solar cells. Lin H; Wang X; Hao F Chimia (Aarau); 2013; 67(3):136-41. PubMed ID: 23574952 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]