These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27537833)

  • 41. Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length.
    Zhao Y; Nardes AM; Zhu K
    J Phys Chem Lett; 2014 Feb; 5(3):490-4. PubMed ID: 26276597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring the heterogeneous interfaces in organic or ruthenium dye-sensitized liquid- and solid-state solar cells.
    Kwon YS; Song I; Lim JC; Song IY; Siva A; Park T
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3141-7. PubMed ID: 22658859
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elementary photoelectronic processes at a porphyrin dye/single-walled TiO2 nanotube hetero-interface in dye-sensitized solar cells: a first-principles study.
    Dong C; Li X; Zhao W; Jin P; Fan X; Qi J
    Chemistry; 2013 Jul; 19(30):10046-56. PubMed ID: 23765451
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CdSe quantum dots and N719-dye decorated hierarchical TiO2 nanorods for the construction of efficient co-sensitized solar cells.
    Subramaniam MR; Kumaresan D
    Chemphyschem; 2015 Aug; 16(12):2543-8. PubMed ID: 26212770
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Boosting the Photovoltage of Dye-Sensitized Solar Cells with Thiolated Gold Nanoclusters.
    Choi H; Chen YS; Stamplecoskie KG; Kamat PV
    J Phys Chem Lett; 2015 Jan; 6(1):217-23. PubMed ID: 26263116
    [TBL] [Abstract][Full Text] [Related]  

  • 46. TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells.
    Pan X; Chen C; Zhu K; Fan Z
    Nanotechnology; 2011 Jun; 22(23):235402. PubMed ID: 21474874
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons.
    Jennings JR; Ghicov A; Peter LM; Schmuki P; Walker AB
    J Am Chem Soc; 2008 Oct; 130(40):13364-72. PubMed ID: 18774820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High efficiency dye-sensitized solar cells exploiting sponge-like ZnO nanostructures.
    Sacco A; Lamberti A; Gazia R; Bianco S; Manfredi D; Shahzad N; Cappelluti F; Ma S; Tresso E
    Phys Chem Chem Phys; 2012 Dec; 14(47):16203-8. PubMed ID: 23001064
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dye-sensitized solar cells based on nanocrystalline TiO2 films surface treated with Al3+ ions: photovoltage and electron transport studies.
    Alarcón H; Boschloo G; Mendoza P; Solis JL; Hagfeldt A
    J Phys Chem B; 2005 Oct; 109(39):18483-90. PubMed ID: 16853380
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Flame-made ultra-porous TiO
    Mayon YO; Duong T; Nasiri N; White TP; Tricoli A; Catchpole KR
    Nanotechnology; 2016 Dec; 27(50):505403. PubMed ID: 27875335
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The influence of charge transport and recombination on the performance of dye-sensitized solar cells.
    Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells.
    Yu H; Pan J; Bai Y; Zong X; Li X; Wang L
    Chemistry; 2013 Sep; 19(40):13569-74. PubMed ID: 23939704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells.
    Sun L; Zhang S; Sun X; He X
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4551-61. PubMed ID: 21128456
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films.
    Green AN; Palomares E; Haque SA; Kroon JM; Durrant JR
    J Phys Chem B; 2005 Jun; 109(25):12525-33. PubMed ID: 16852549
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells.
    Wang Q; Moser JE; Grätzel M
    J Phys Chem B; 2005 Aug; 109(31):14945-53. PubMed ID: 16852893
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The origin of higher open-circuit voltage in Zn-doped TiO2 nanoparticle-based dye-sensitized solar cells.
    Zhu F; Zhang P; Wu X; Fu L; Zhang J; Xu D
    Chemphyschem; 2012 Nov; 13(16):3731-7. PubMed ID: 22899421
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NiO-decorated mesoporous TiO2 flowers for an improved photovoltaic dye sensitized solar cell.
    Zhi J; Chen A; Cui H; Xie Y; Huang F
    Phys Chem Chem Phys; 2015 Feb; 17(7):5103-8. PubMed ID: 25600889
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electron transport dynamics in TiO(2) films deposited on ti foils for back-illuminated dye-sensitized solar cells.
    Chen LC; Hsieh CT; Lee YL; Teng H
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11958-64. PubMed ID: 24147618
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent progress in one dimensional TiO
    Joshy D; Narendranath SB; Ismail YA; Periyat P
    Nanoscale Adv; 2022 Dec; 4(24):5202-5232. PubMed ID: 36540125
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of optical properties on photovoltaic performance in dye-sensitized TiO2 nanocrystalline solar cells.
    Ji YJ; Zhang MD; Cui JH; Zheng HG; Zhu JJ
    J Nanosci Nanotechnol; 2013 Jun; 13(6):3948-54. PubMed ID: 23862431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.