These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 27537882)

  • 21. Avalanche Photodiodes and Silicon Photomultipliers of Non-Planar Designs.
    Vinogradov S
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Stacked Back Side-Illuminated Voltage Domain Global Shutter CMOS Image Sensor with a 4.0 μm Multiple Gain Readout Pixel
    Miyauchi K; Mori K; Otaka T; Isozaki T; Yasuda N; Tsai A; Sawai Y; Owada H; Takayanagi I; Nakamura J
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.
    Takai I; Matsubara H; Soga M; Ohta M; Ogawa M; Yamashita T
    Sensors (Basel); 2016 Mar; 16(4):459. PubMed ID: 27043569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-Energy Ion Implantation and Deep-Mesa Si-Avalanche Photodiodes with Improved Fabrication Process.
    Wang T; Peng H; Cao P; Zhuang Q; Deng J; Chen J; Zheng W
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo simulations of compact gamma cameras based on avalanche photodiodes.
    Després P; Funk T; Shah KS; Hasegawa BH
    Phys Med Biol; 2007 Jun; 52(11):3057-74. PubMed ID: 17505089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. InGaAs-GaAs Nanowire Avalanche Photodiodes Toward Single-Photon Detection in Free-Running Mode.
    Farrell AC; Meng X; Ren D; Kim H; Senanayake P; Hsieh NY; Rong Z; Chang TY; Azizur-Rahman KM; Huffaker DL
    Nano Lett; 2019 Jan; 19(1):582-590. PubMed ID: 30517782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration.
    Sun P; Ishihara R; Charbon E
    Opt Express; 2016 Feb; 24(4):3734-48. PubMed ID: 26907030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 45 nm CMOS Avalanche Photodiode with 8.4-GHz Bandwidth.
    Zhi W; Quan Q; Yu P; Jiang Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31936108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 45 nm Stacked CMOS Image Sensor Process Technology for Submicron Pixel.
    Takahashi S; Huang YM; Sze JJ; Wu TT; Guo FS; Hsu WC; Tseng TH; Liao K; Kuo CC; Chen TH; Chiang WC; Chuang CH; Chou KY; Chung CH; Chou KY; Tseng CH; Wang CJ; Yaung DN
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29206162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thin Al
    Zhou X; Tan CH; Zhang S; Moreno M; Xie S; Abdullah S; Ng JS
    R Soc Open Sci; 2017 May; 4(5):170071. PubMed ID: 28573013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High signal-noise ratio avalanche photodiodes with dynamic biasing technology for laser radar applications.
    Tian Y; Ding W; Feng X; Lin Z; Zhao Y
    Opt Express; 2022 Jul; 30(15):26484-26491. PubMed ID: 36236839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A CMOS SPAD Imager with Collision Detection and 128 Dynamically Reallocating TDCs for Single-Photon Counting and 3D Time-of-Flight Imaging.
    Zhang C; Lindner S; Antolovic IM; Wolf M; Charbon E
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revisiting the Modeling of the Conversion Gain of CMOS Image Sensors with a New Stochastic Approach.
    Cherniak G; Nemirovsky A; Nemirovsky Y
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging.
    Burri S; Powolny F; Bruschini C; Michalet X; Regazzoni F; Charbon E
    Proc SPIE Int Soc Opt Eng; 2014 Apr; 9141():. PubMed ID: 28626292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes.
    Farrell AC; Senanayake P; Hung CH; El-Howayek G; Rajagopal A; Currie M; Hayat MM; Huffaker DL
    Sci Rep; 2015 Dec; 5():17580. PubMed ID: 26627932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product.
    Hayat MM; Ramirez DA
    Opt Express; 2012 Mar; 20(7):8024-40. PubMed ID: 22453474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Impact Ionization Coefficient of ZnO Based on a p-Si/i-ZnO/n-AZO Avalanche Photodiode.
    Li G; Zhao X; Jia X; Li S; He Y
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical Analysis of InGaAs/InAlAs Single-Photon Avalanche Photodiodes.
    Cao S; Zhao Y; Feng S; Zuo Y; Zhang L; Cheng B; Li C
    Nanoscale Res Lett; 2019 Jan; 14(1):3. PubMed ID: 30607636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 7 ke-SD-FWC 1.2 e-RMS Temporal Random Noise 128×256 Time-Resolved CMOS Image Sensor With Two In-Pixel SDs for Biomedical Applications.
    Seo MW; Kawahito S
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1335-1343. PubMed ID: 28945601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Avalanche Transients of Thick 0.35 µm CMOS Single-Photon Avalanche Diodes.
    Goll B; Steindl B; Zimmermann H
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.