These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 27537882)

  • 41. High gain and low excess noise InGaAs/InP avalanche photodiode with lateral impact ionization.
    Wang R; Tian Y; Li Q; Zhao Y
    Appl Opt; 2020 Mar; 59(7):1980-1984. PubMed ID: 32225716
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Silicon-on-Insulator-Based Dual-Gain Charge-Sensitive Pixel Detector for Low-Noise X-ray Imaging for Future Astronomical Satellite Missions.
    Shrestha S; Kawahito S; Kamehama H; Nakanishi S; Yasutomi K; Kagawa K; Teranishi N; Takeda A; Tsuru TG; Kurachi I; Arai Y
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29865217
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm.
    Scarcella C; Tosi A; Villa F; Tisa S; Zappa F
    Rev Sci Instrum; 2013 Dec; 84(12):123112. PubMed ID: 24387425
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors.
    Dutton NAW; Al Abbas T; Gyongy I; Mattioli Della Rocca F; Henderson RK
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29641479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fully Depleted, Trench-Pinned Photo Gate for CMOS Image Sensor Applications.
    Roy F; Suler A; Dalleau T; Duru R; Benoit D; Arnaud J; Cazaux Y; Chaton C; Montes L; Morfouli P; Lu GN
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Few-photon detection using InAs avalanche photodiodes.
    Tan CH; Velichko A; Lim LW; Ng JS
    Opt Express; 2019 Feb; 27(4):5835-5842. PubMed ID: 30876178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of carrier injection profile on low noise thin Al
    Pinel LLG; Dimler SJ; Zhou X; Abdullah S; Zhang S; Tan CH; Ng JS
    Opt Express; 2018 Feb; 26(3):3568-3576. PubMed ID: 29401884
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-Performance Waveguide-Integrated Ge/Si Avalanche Photodetector with Lateral Multiplication Region.
    Liu D; Zhang P; Tang B; Wang W; Li Z
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630116
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.
    Martinez NJ; Derose CT; Brock RW; Starbuck AL; Pomerene AT; Lentine AL; Trotter DC; Davids PS
    Opt Express; 2016 Aug; 24(17):19072-81. PubMed ID: 27557187
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An Optical Filter-Less CMOS Image Sensor with Differential Spectral Response Pixels for Simultaneous UV-Selective and Visible Imaging.
    Sipauba Carvalho da Silva YR; Kuroda R; Sugawa S
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of solid-state avalanche amorphous selenium for medical imaging.
    Scheuermann JR; Goldan AH; Tousignant O; Léveillé S; Zhao W
    Med Phys; 2015 Mar; 42(3):1223-6. PubMed ID: 25735277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Noise optimization of single-photon avalanche diodes fabricated in 110 nm CMOS image sensor technology.
    Ha WY; Park E; Park B; Chae Y; Choi WY; Lee MJ
    Opt Express; 2022 Apr; 30(9):14958-14965. PubMed ID: 35473228
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.
    Esposito M; Anaxagoras T; Konstantinidis AC; Zheng Y; Speller RD; Evans PM; Allinson NM; Wells K
    Phys Med Biol; 2014 Jul; 59(13):3533-54. PubMed ID: 24909098
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and characterization of a p+/n-well SPAD array in 150nm CMOS process.
    Xu H; Pancheri L; Betta GD; Stoppa D
    Opt Express; 2017 May; 25(11):12765-12778. PubMed ID: 28786630
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrated fiber optical receiver reducing the gap to the quantum limit.
    Zimmermann H; Steindl B; Hofbauer M; Enne R
    Sci Rep; 2017 Jun; 7(1):2652. PubMed ID: 28572578
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measured Temperature Dependence of Scintillation Camera Signals Read Out by Geiger-Müller Mode Avalanche Photodiodes.
    Hunter WC; Miyaoka RS; Macdonald LR; Lewellen TK
    IEEE Nucl Sci Symp Conf Rec (1997); 2009 Oct; 2009():2662-2665. PubMed ID: 20625461
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High temperature and wavelength dependence of avalanche gain of AlAsSb avalanche photodiodes.
    Sandall IC; Xie S; Xie J; Tan CH
    Opt Lett; 2011 Nov; 36(21):4287-9. PubMed ID: 22048393
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors.
    Perenzoni M; Pancheri L; Stoppa D
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27223284
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low power wide spectrum optical transmitter using avalanche mode LEDs in SOI CMOS technology.
    Agarwal V; Dutta S; Annema AJ; Hueting RJE; Steeneken PG; Nauta B
    Opt Express; 2017 Jul; 25(15):16981-16995. PubMed ID: 28789197
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM.
    Lee C; Johnson B; Jung T; Molnar A
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.