BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27537887)

  • 1. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination.
    Wang GH; Cheng CY; Liu MH; Chen TY; Hsieh MC; Chung YC
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27537887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater.
    Wu LC; Tsai TH; Liu MH; Kuo JL; Chang YC; Chung YC
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29076985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Stage Single-Chambered Microbial Fuel Cell Biosensor Inoculated with
    Wu LC; Wang GH; Tsai TH; Lo SY; Cheng CY; Chung YC
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexavalent chromium removal and bioelectricity generation by Ochrobactrum sp. YC211 under different oxygen conditions.
    Chen CY; Cheng CY; Chen CK; Hsieh MC; Lin ST; Ho KY; Li JW; Lin CP; Chung YC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(6):502-8. PubMed ID: 26889692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Early Warning System Based on a Sediment Microbial Fuel Cell for In Situ and Real Time Hexavalent Chromium Detection in Industrial Wastewater.
    Zhao S; Liu P; Niu Y; Chen Z; Khan A; Zhang P; Li X
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29470394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.
    Gangadharan P; Nambi IM
    Water Sci Technol; 2015; 71(3):353-8. PubMed ID: 25714633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.
    Song TS; Jin Y; Bao J; Kang D; Xie J
    J Hazard Mater; 2016 Nov; 317():73-80. PubMed ID: 27262274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cr(VI) removal from soils and groundwater using an integrated adsorption and microbial fuel cell (A-MFC) technology.
    Zhang T; Hu L; Zhang M; Jiang M; Fiedler H; Bai W; Wang X; Zhang D; Li Z
    Environ Pollut; 2019 Sep; 252(Pt B):1399-1405. PubMed ID: 31260939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production.
    Mu C; Wang L; Wang L
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25140-25148. PubMed ID: 32347498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applicability of a submersible microbial fuel cell for Cr(VI) detection in water.
    Chung H; Ju WJ; Jho EH; Nam K
    Environ Monit Assess; 2016 Nov; 188(11):613. PubMed ID: 27730460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of biochemical oxygen demand from different wastewater samples using a mediator-less microbial fuel cell biosensor.
    Hsieh MC; Chung YC
    Environ Technol; 2014; 35(17-20):2204-11. PubMed ID: 25145173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium (VI) reduction by cell free extract of Ochrobactrum anthropi isolated from tannery effluent.
    Sultan S; Hasnain S
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):152-7. PubMed ID: 22526999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell.
    Zuo Y; Xing D; Regan JM; Logan BE
    Appl Environ Microbiol; 2008 May; 74(10):3130-7. PubMed ID: 18359834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.
    Hsieh MC; Cheng CY; Liu MH; Chung YC
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26729113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel two-phase bioreactor for microbial hexavalent chromium removal from wastewater.
    Lytras G; Lytras C; Argyropoulou D; Dimopoulos N; Malavetas G; Lyberatos G
    J Hazard Mater; 2017 Aug; 336():41-51. PubMed ID: 28472707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two combined mechanisms responsible to hexavalent chromium removal on active anaerobic granular consortium.
    Durán U; Coronado-Apodaca KG; Meza-Escalante ER; Ulloa-Mercado G; Serrano D
    Chemosphere; 2018 May; 198():191-197. PubMed ID: 29421729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hexavalent chromium on performance and microbial community of an aerobic granular sequencing batch reactor.
    Wang Z; Gao M; She Z; Jin C; Zhao Y; Yang S; Guo L; Wang S
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4575-86. PubMed ID: 25318421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Cr (VI) concentration on Cr (VI) reduction and electricity production in microbial fuel cell.
    Zhang X; Liu Y; Li C
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):54170-54176. PubMed ID: 34405326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wood carbon electrode in microbial fuel cell enhances chromium reduction and bioelectricity generation.
    Ni H; Khan A; Yang Z; Gong Y; Ali G; Liu P; Chen F; Li X
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):13709-13719. PubMed ID: 34595714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of a microbial fuel cell-based biosensor for online monitoring in an integrated system combining microbial fuel cell and upflow anaerobic sludge bed reactor.
    Jia H; Yang G; Wang J; Ngo HH; Guo W; Zhang H; Zhang X
    Bioresour Technol; 2016 Oct; 218():286-93. PubMed ID: 27372008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.