These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 27538751)
1. Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico. Ortega-Guerrero A Environ Geochem Health; 2017 Oct; 39(5):987-1003. PubMed ID: 27538751 [TBL] [Abstract][Full Text] [Related]
2. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
3. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina). Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830 [TBL] [Abstract][Full Text] [Related]
4. Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan. Mushtaq N; Younas A; Mashiatullah A; Javed T; Ahmad A; Farooqi A Chemosphere; 2018 Jun; 200():576-586. PubMed ID: 29505930 [TBL] [Abstract][Full Text] [Related]
5. Co-occurrence of elevated arsenic and fluoride concentrations in Wuliangsu Lake: Implications for the genesis of poor-quality groundwater in the (paleo-)Huanghe (Yellow River) catchment, China. Yan YN; Zhang JW; Wu N; Xia ZH; Liu L; Zhao ZQ Water Res; 2024 Jul; 258():121767. PubMed ID: 38754296 [TBL] [Abstract][Full Text] [Related]
6. Impact process of the aquitard to regional arsenic accumulation of the underlying aquifer in Central Yangtze River Basin. Xiao C; Ma T; Du Y; Liu Y; Liu R; Zhang D; Chen J Environ Geochem Health; 2021 Mar; 43(3):1091-1107. PubMed ID: 32839956 [TBL] [Abstract][Full Text] [Related]
7. Regional-scale hydrogeochemical evolution across the arsenic-enriched transboundary aquifers of the Ganges River Delta system, India and Bangladesh. Chakraborty M; Mukherjee A; Ahmed KM Sci Total Environ; 2022 Jun; 823():153490. PubMed ID: 35104519 [TBL] [Abstract][Full Text] [Related]
8. Effect of groundwater--lake interactions on arsenic enrichment in freshwater beach aquifers. Lee J; Robinson C; Couture RM Environ Sci Technol; 2014 Sep; 48(17):10174-81. PubMed ID: 25072630 [TBL] [Abstract][Full Text] [Related]
9. Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion. Dehbandi R; Abbasnejad A; Karimi Z; Herath I; Bundschuh J Environ Pollut; 2019 Jun; 249():910-922. PubMed ID: 30965543 [TBL] [Abstract][Full Text] [Related]
10. Effects of redox conditions on the control of arsenic mobility in shallow alluvial aquifers on the Venetian Plain (Italy). Carraro A; Fabbri P; Giaretta A; Peruzzo L; Tateo F; Tellini F Sci Total Environ; 2015 Nov; 532():581-94. PubMed ID: 26115337 [TBL] [Abstract][Full Text] [Related]
11. Organic carbon sources and controlling processes on aquifer arsenic cycling in the Jianghan Plain, central China. Yu K; Gan Y; Zhou A; Liu C; Duan Y; Han L; Zhang Y Chemosphere; 2018 Oct; 208():773-781. PubMed ID: 29902762 [TBL] [Abstract][Full Text] [Related]
12. Occurrence and geochemical behavior of arsenic in a coastal aquifer-aquitard system of the Pearl River Delta, China. Wang Y; Jiao JJ; Cherry JA Sci Total Environ; 2012 Jun; 427-428():286-97. PubMed ID: 22554534 [TBL] [Abstract][Full Text] [Related]
13. Arsenic and fluoride variations in groundwater of an endorheic basin undergoing land-use changes. Reyes-Gómez VM; Alarcón-Herrera MT; Gutiérrez M; López DN Arch Environ Contam Toxicol; 2015 Feb; 68(2):292-304. PubMed ID: 25224991 [TBL] [Abstract][Full Text] [Related]
14. Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system. Huang S; Liu C; Wang Y; Zhan H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(4):478-89. PubMed ID: 24345245 [TBL] [Abstract][Full Text] [Related]
15. Floodplains landforms, clay deposition and irrigation return flow govern arsenic occurrence, prevalence and mobilization: A geochemical and isotopic study of the mid-Gangetic floodplains. Kumar S; Kumar V; Saini RK; Pant N; Singh R; Singh A; Kumar S; Singh S; Yadav BK; Krishan G; Raj A; Maurya NS; Kumar M Environ Res; 2021 Oct; 201():111516. PubMed ID: 34166666 [TBL] [Abstract][Full Text] [Related]
16. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
17. Arsenic and fluorine in groundwater in northern Mexico: spatial distribution and enrichment factors. Gutiérrez M; Alarcón-Herrera MT; Gaytán-Alarcón AP Environ Monit Assess; 2022 Dec; 195(1):212. PubMed ID: 36536100 [TBL] [Abstract][Full Text] [Related]
18. Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin. Schaefer MV; Ying SC; Benner SG; Duan Y; Wang Y; Fendorf S Environ Sci Technol; 2016 Apr; 50(7):3521-9. PubMed ID: 26788939 [TBL] [Abstract][Full Text] [Related]
19. Influences of groundwater extraction on the distribution of dissolved As in shallow aquifers of West Bengal, India. Neidhardt H; Berner Z; Freikowski D; Biswas A; Winter J; Chatterjee D; Norra S J Hazard Mater; 2013 Nov; 262():941-50. PubMed ID: 23415500 [TBL] [Abstract][Full Text] [Related]
20. Arsenic in groundwater of the Paraiba do Sul delta, Brazil: An atmospheric source? Mirlean N; Baisch P; Diniz D Sci Total Environ; 2014 Jun; 482-483():148-56. PubMed ID: 24642100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]