These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 27539019)
1. Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing. Peng R; Li D Lab Chip; 2016 Oct; 16(19):3767-76. PubMed ID: 27539019 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of polydimethylsiloxane nanofluidic chips under AFM tip-based nanomilling process. Wang J; Yan Y; Geng Y; Gan Y; Fang Z Nanoscale Res Lett; 2019 Apr; 14(1):136. PubMed ID: 30997583 [TBL] [Abstract][Full Text] [Related]
3. A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel. Li J; Li D J Colloid Interface Sci; 2021 Aug; 596():54-63. PubMed ID: 33831750 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography. Wu C; Lin TG; Zhan Z; Li Y; Tung SCH; Tang WC; Li WJ Microsyst Nanoeng; 2017; 3():16084. PubMed ID: 31057852 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of nanochannels on polystyrene surface. Peng R; Li D Biomicrofluidics; 2015 Mar; 9(2):024117. PubMed ID: 25945143 [TBL] [Abstract][Full Text] [Related]
6. Increased Flexibility in Lab-on-Chip Design with a Polymer Patchwork Approach. Pezzuoli D; Angeli E; Repetto D; Guida P; Firpo G; Repetto L Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31775220 [TBL] [Abstract][Full Text] [Related]
7. Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio. Wang S; Liu Y; Ge P; Kan Q; Yu N; Wang J; Nan J; Ye S; Zhang J; Xu W; Yang B Lab Chip; 2018 Mar; 18(6):979-988. PubMed ID: 29485661 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis. Xia D; Yan J; Hou S Small; 2012 Sep; 8(18):2787-801. PubMed ID: 22778064 [TBL] [Abstract][Full Text] [Related]
9. Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma. Kim SH; Cui Y; Lee MJ; Nam SW; Oh D; Kang SH; Kim YS; Park S Lab Chip; 2011 Jan; 11(2):348-53. PubMed ID: 20957251 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes. Liu J; Wang L; Ouyang W; Wang W; Qin J; Xu Z; Xu S; Ge D; Wang L; Liu C; Wang L Biosens Bioelectron; 2015 Oct; 72():288-93. PubMed ID: 26000461 [TBL] [Abstract][Full Text] [Related]
11. Injection molded nanofluidic chips: fabrication method and functional tests using single-molecule DNA experiments. Utko P; Persson F; Kristensen A; Larsen NB Lab Chip; 2011 Jan; 11(2):303-8. PubMed ID: 21057689 [TBL] [Abstract][Full Text] [Related]
12. A simple approach for an optically transparent nanochannel device prototype. Liang F; Ju A; Qiao Y; Guo J; Feng H; Li J; Lu N; Tu J; Lu Z Lab Chip; 2016 Mar; 16(6):984-91. PubMed ID: 26891717 [TBL] [Abstract][Full Text] [Related]
13. Wafer-scale fabrication of nanofluidic arrays and networks using nanoimprint lithography and lithographically patterned nanowire electrodeposition gold nanowire masters. Halpern AR; Donavan KC; Penner RM; Corn RM Anal Chem; 2012 Jun; 84(11):5053-8. PubMed ID: 22533970 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of a Novel Nanofluidic Device Featuring ZnO Nanochannels. Kim S; Kim GH; Woo H; An T; Lim G ACS Omega; 2020 Feb; 5(7):3144-3150. PubMed ID: 32118130 [TBL] [Abstract][Full Text] [Related]
15. Microchannel refill: a new method for fabricating 2D nanochannels in polymer substrates. Li JM; Liu C; Ke X; Xu Z; Duan YJ; Fan Y; Li M; Zhang KP; Wang LD Lab Chip; 2012 Oct; 12(20):4059-62. PubMed ID: 22941049 [TBL] [Abstract][Full Text] [Related]
16. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process. Xu Y; Wang C; Dong Y; Li L; Jang K; Mawatari K; Suga T; Kitamori T Anal Bioanal Chem; 2012 Jan; 402(3):1011-8. PubMed ID: 22134493 [TBL] [Abstract][Full Text] [Related]
17. Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication. Hu H; Zhuo Y; Oruc ME; Cunningham BT; King WP Nanotechnology; 2014 Nov; 25(45):455301. PubMed ID: 25327873 [TBL] [Abstract][Full Text] [Related]
18. Mixed-scale channel networks including Kingfisher-beak-shaped 3D microfunnels for efficient single particle entrapment. Lee Y; Lim Y; Shin H Nanoscale; 2016 Jun; 8(23):11810-7. PubMed ID: 27279423 [TBL] [Abstract][Full Text] [Related]
19. High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies. van Kan JA; Zhang C; Perumal Malar P; van der Maarel JR Biomicrofluidics; 2012 Sep; 6(3):36502. PubMed ID: 23898358 [TBL] [Abstract][Full Text] [Related]
20. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing. Peng R; Li D Nanoscale; 2017 May; 9(18):5964-5974. PubMed ID: 28440838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]