BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27539100)

  • 1. The ratio of diameters between the target artery and the bypass modifies hemodynamic parameters related to intimal hyperplasia in the distal end-to-side anastomosis.
    Grus T; Lambert L; Matěcha J; Grusová G; Špaček M; Mlček M
    Physiol Res; 2016 Dec; 65(6):901-908. PubMed ID: 27539100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study.
    Kute SM; Vorp DA
    J Biomech Eng; 2001 Jun; 123(3):277-83. PubMed ID: 11476372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different POS:DOS flow ratios.
    Li XM; Rittgers SE
    J Biomech Eng; 2001 Jun; 123(3):270-6. PubMed ID: 11476371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational fluid dynamics study on hemodynamics for different locations of the distal anastomosis of a bypass nearby a collateral vessel in the femoropopliteal area.
    Rivera J; van der Graaf GB; Escudero JR; Bellmunt S; van de Vosse F
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1263-77. PubMed ID: 24916477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of graft caliber upon wall shear within in vivo distal vascular anastomoses.
    Keynton RS; Evancho MM; Sims RL; Rittgers SE
    J Biomech Eng; 1999 Feb; 121(1):79-88. PubMed ID: 10080093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review.
    Haruguchi H; Teraoka S
    J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study.
    Keynton RS; Evancho MM; Sims RL; Rodway NV; Gobin A; Rittgers SE
    J Biomech Eng; 2001 Oct; 123(5):464-73. PubMed ID: 11601732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study on the pulsatile flow characteristics of proximal anastomotic models.
    Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels.
    Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA
    Crit Rev Biomed Eng; 2017; 45(1-6):319-382. PubMed ID: 29953383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of flow through a Miller cuff bypass graft.
    Henry FS; Küpper C; Lewington NP
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):207-17. PubMed ID: 12186713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of angle on wall shear stress distribution for an end-to-side anastomosis.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1994 Jun; 19(6):1067-73. PubMed ID: 8201708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamics of a side-to-end proximal arterial anastomosis model.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1993 Apr; 17(4):646-55. PubMed ID: 8464081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic parameters and early intimal thickening in branching blood vessels.
    Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA
    Crit Rev Biomed Eng; 2001; 29(1):1-64. PubMed ID: 11321642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Computational Fluid Dynamics and Particle Image Velocimetry Models of Distal-End Side-to-Side and End-to-Side Anastomoses for Coronary Artery Bypass Grafting in a Pulsatile Flow.
    Shintani Y; Iino K; Yamamoto Y; Kato H; Takemura H; Kiwata T
    Circ J; 2017 Dec; 82(1):110-117. PubMed ID: 28824030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery.
    How TV; Rowe CS; Gilling-Smith GL; Harris PL
    J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of intimal hyperplasia development and shear stress distribution at the distal end-side-anastomosis, in vitro study using particle image velocimetry.
    Heise M; Krüger U; Rückert R; Pfitzman R; Neuhaus P; Settmacher U
    Eur J Vasc Endovasc Surg; 2003 Oct; 26(4):357-66. PubMed ID: 14511996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Analysis of Turbulent Hemodynamics in Radiocephalic Arteriovenous Fistulas to Determine the Best Anastomotic Angles.
    Prouse G; Stella S; Vergara C; Quarteroni A; Engelberger S; Canevascini R; Giovannacci L
    Ann Vasc Surg; 2020 Oct; 68():451-459. PubMed ID: 32278869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts.
    Frauenfelder T; Boutsianis E; Schertler T; Husmann L; Leschka S; Poulikakos D; Marincek B; Alkadhi H
    Biomed Eng Online; 2007 Sep; 6():35. PubMed ID: 17897460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.