These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 27539100)
1. The ratio of diameters between the target artery and the bypass modifies hemodynamic parameters related to intimal hyperplasia in the distal end-to-side anastomosis. Grus T; Lambert L; Matěcha J; Grusová G; Špaček M; Mlček M Physiol Res; 2016 Dec; 65(6):901-908. PubMed ID: 27539100 [TBL] [Abstract][Full Text] [Related]
2. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study. Kute SM; Vorp DA J Biomech Eng; 2001 Jun; 123(3):277-83. PubMed ID: 11476372 [TBL] [Abstract][Full Text] [Related]
3. Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different POS:DOS flow ratios. Li XM; Rittgers SE J Biomech Eng; 2001 Jun; 123(3):270-6. PubMed ID: 11476371 [TBL] [Abstract][Full Text] [Related]
4. A computational fluid dynamics study on hemodynamics for different locations of the distal anastomosis of a bypass nearby a collateral vessel in the femoropopliteal area. Rivera J; van der Graaf GB; Escudero JR; Bellmunt S; van de Vosse F Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1263-77. PubMed ID: 24916477 [TBL] [Abstract][Full Text] [Related]
5. The effect of graft caliber upon wall shear within in vivo distal vascular anastomoses. Keynton RS; Evancho MM; Sims RL; Rittgers SE J Biomech Eng; 1999 Feb; 121(1):79-88. PubMed ID: 10080093 [TBL] [Abstract][Full Text] [Related]
6. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. Haruguchi H; Teraoka S J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664 [TBL] [Abstract][Full Text] [Related]
7. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. Keynton RS; Evancho MM; Sims RL; Rodway NV; Gobin A; Rittgers SE J Biomech Eng; 2001 Oct; 123(5):464-73. PubMed ID: 11601732 [TBL] [Abstract][Full Text] [Related]
8. Numerical study on the pulsatile flow characteristics of proximal anastomotic models. Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153 [TBL] [Abstract][Full Text] [Related]
9. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. Lei M; Archie JP; Kleinstreuer C J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618 [TBL] [Abstract][Full Text] [Related]
10. Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels. Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA Crit Rev Biomed Eng; 2017; 45(1-6):319-382. PubMed ID: 29953383 [TBL] [Abstract][Full Text] [Related]
11. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow. Freshwater IJ; Morsi YS; Lai T Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764 [TBL] [Abstract][Full Text] [Related]
12. Simulation of flow through a Miller cuff bypass graft. Henry FS; Küpper C; Lewington NP Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):207-17. PubMed ID: 12186713 [TBL] [Abstract][Full Text] [Related]
13. Influence of angle on wall shear stress distribution for an end-to-side anastomosis. Ojha M; Cobbold RS; Johnston KW J Vasc Surg; 1994 Jun; 19(6):1067-73. PubMed ID: 8201708 [TBL] [Abstract][Full Text] [Related]
14. Hemodynamics of a side-to-end proximal arterial anastomosis model. Ojha M; Cobbold RS; Johnston KW J Vasc Surg; 1993 Apr; 17(4):646-55. PubMed ID: 8464081 [TBL] [Abstract][Full Text] [Related]
15. Hemodynamic parameters and early intimal thickening in branching blood vessels. Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA Crit Rev Biomed Eng; 2001; 29(1):1-64. PubMed ID: 11321642 [TBL] [Abstract][Full Text] [Related]
16. Analysis of Computational Fluid Dynamics and Particle Image Velocimetry Models of Distal-End Side-to-Side and End-to-Side Anastomoses for Coronary Artery Bypass Grafting in a Pulsatile Flow. Shintani Y; Iino K; Yamamoto Y; Kato H; Takemura H; Kiwata T Circ J; 2017 Dec; 82(1):110-117. PubMed ID: 28824030 [TBL] [Abstract][Full Text] [Related]
17. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery. How TV; Rowe CS; Gilling-Smith GL; Harris PL J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893 [TBL] [Abstract][Full Text] [Related]
18. Correlation of intimal hyperplasia development and shear stress distribution at the distal end-side-anastomosis, in vitro study using particle image velocimetry. Heise M; Krüger U; Rückert R; Pfitzman R; Neuhaus P; Settmacher U Eur J Vasc Endovasc Surg; 2003 Oct; 26(4):357-66. PubMed ID: 14511996 [TBL] [Abstract][Full Text] [Related]
19. Computational Analysis of Turbulent Hemodynamics in Radiocephalic Arteriovenous Fistulas to Determine the Best Anastomotic Angles. Prouse G; Stella S; Vergara C; Quarteroni A; Engelberger S; Canevascini R; Giovannacci L Ann Vasc Surg; 2020 Oct; 68():451-459. PubMed ID: 32278869 [TBL] [Abstract][Full Text] [Related]
20. Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts. Frauenfelder T; Boutsianis E; Schertler T; Husmann L; Leschka S; Poulikakos D; Marincek B; Alkadhi H Biomed Eng Online; 2007 Sep; 6():35. PubMed ID: 17897460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]