These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27539190)

  • 21. [Fluorine removal efficiency of organic-calcium during coal combustion].
    Liu J; Liu JZ; Zhou JH; Xiao HP; Cen KF
    Huan Jing Ke Xue; 2006 Aug; 27(8):1512-5. PubMed ID: 17111603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.
    Long L; Sun S; Zhong S; Dai W; Liu J; Song W
    J Hazard Mater; 2010 May; 177(1-3):626-32. PubMed ID: 20060640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic insights into catalysis of in-situ iron on pyrolysis of waste printed circuit boards: Comparative study of kinetics, products, and reaction mechanism.
    Liu J; Wang H; Zhang W; Wang T; Mei M; Chen S; Li J
    J Hazard Mater; 2022 Jun; 431():128612. PubMed ID: 35259695
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conversion of bromine during thermal decomposition of printed circuit boards at high temperature.
    Jin YQ; Tao L; Chi Y; Yan JH
    J Hazard Mater; 2011 Feb; 186(1):707-12. PubMed ID: 21145653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyrolysis of waste plastic crusts of televisions.
    Liu X; Wang Z; Xu D; Guo Q
    Environ Technol; 2012 Sep; 33(16-18):1987-92. PubMed ID: 23240191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal degradation and pollutant emission from waste printed circuit boards mounted with electronic components.
    Guo J; Luo X; Tan S; Ogunseitan OA; Xu Z
    J Hazard Mater; 2020 Jan; 382():121038. PubMed ID: 31450210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic simulation and prediction of pyrolysis process for non-metallic fraction of waste printed circuit boards by discrete distributed activation energy model compared with isoconversional method.
    Chen Y; Yang J; Zhang Y; Liu K; Liang S; Xu X; Hu J; Yao H; Xiao B
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3636-3646. PubMed ID: 29164464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels.
    Ma E; Xu Z
    J Hazard Mater; 2013 Dec; 263 Pt 2():610-7. PubMed ID: 24231317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.
    Castro HA; Luca V; Bianchi HL
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21403-21410. PubMed ID: 28337628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The separation of waste printed circuit board by dissolving bromine epoxy resin using organic solvent.
    Zhu P; Chen Y; Wang LY; Zhou M; Zhou J
    Waste Manag; 2013 Feb; 33(2):484-8. PubMed ID: 23177567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interfacial and mechanical property analysis of waste printed circuit boards subject to thermal shock.
    Li J; Duan H; Yu K; Wang S
    J Air Waste Manag Assoc; 2010 Feb; 60(2):229-36. PubMed ID: 20222536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrolysis of polyolefins for increasing the yield of monomers' recovery.
    Donaj PJ; Kaminsky W; Buzeto F; Yang W
    Waste Manag; 2012 May; 32(5):840-6. PubMed ID: 22093704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-situ debromination mechanism based on self-activation and catalysis of Ca(OH)
    Gao R; Liu B; Zhan L; Guo J; Zhang J; Xu Z
    J Hazard Mater; 2020 Jun; 392():122447. PubMed ID: 32193111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of exhaust gas, liquid products, and residues of printed circuit boards using the pyrolysis process.
    Chiang HL; Lo CC; Ma SY
    Environ Sci Pollut Res Int; 2010 Mar; 17(3):624-33. PubMed ID: 19806377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High quality fuel gas from biomass pyrolysis with calcium oxide.
    Zhao B; Zhang X; Chen L; Sun L; Si H; Chen G
    Bioresour Technol; 2014 Mar; 156():78-83. PubMed ID: 24486940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trichloroethylene decomposition and in-situ dry sorption of Cl-products by calcium oxides prepared from hydrated limes.
    Gotoh Y; Iwata G; Choh K; Kubota M; Matsuda H
    Chemosphere; 2011 Oct; 85(4):637-42. PubMed ID: 21821273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of pyrolysis process to remove and recover liquid crystal and films from waste liquid crystal display glass.
    Lu R; Ma E; Xu Z
    J Hazard Mater; 2012 Dec; 243():311-8. PubMed ID: 23127276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst.
    Zhang H; Xiao R; Jin B; Xiao G; Chen R
    Bioresour Technol; 2013 Jul; 140():256-62. PubMed ID: 23707913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of copper rich metallic phases from waste printed circuit boards.
    Cayumil R; Khanna R; Ikram-Ul-Haq M; Rajarao R; Hill A; Sahajwalla V
    Waste Manag; 2014 Oct; 34(10):1783-92. PubMed ID: 25052340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes.
    Liu K; Zhang Z; Zhang FS
    Waste Manag; 2016 Oct; 56():423-30. PubMed ID: 27287009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.