These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 27539344)
1. [Application of R-based multiple seasonal ARIMA model, in predicting the incidence of hand, foot and mouth disease in Shaanxi province]. Liu F; Zhu N; Qiu L; Wang JJ; Wang WH Zhonghua Liu Xing Bing Xue Za Zhi; 2016 Aug; 37(8):1117-20. PubMed ID: 27539344 [TBL] [Abstract][Full Text] [Related]
2. [Model of multiple seasonal autoregressive integrated moving average model and its application in prediction of the hand-foot-mouth disease incidence in Changsha]. Tan T; Chen L; Liu F Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2014 Nov; 39(11):1170-6. PubMed ID: 25432381 [TBL] [Abstract][Full Text] [Related]
3. Application of seasonal auto-regressive integrated moving average model in forecasting the incidence of hand-foot-mouth disease in Wuhan, China. Peng Y; Yu B; Wang P; Kong DG; Chen BH; Yang XB J Huazhong Univ Sci Technolog Med Sci; 2017 Dec; 37(6):842-848. PubMed ID: 29270741 [TBL] [Abstract][Full Text] [Related]
4. Predicting the incidence of hand, foot and mouth disease in Sichuan province, China using the ARIMA model. Liu L; Luan RS; Yin F; Zhu XP; Lü Q Epidemiol Infect; 2016 Jan; 144(1):144-51. PubMed ID: 26027606 [TBL] [Abstract][Full Text] [Related]
5. Forecasting incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China. Liu W; Bao C; Zhou Y; Ji H; Wu Y; Shi Y; Shen W; Bao J; Li J; Hu J; Huo X BMC Infect Dis; 2019 Oct; 19(1):828. PubMed ID: 31590636 [TBL] [Abstract][Full Text] [Related]
6. [Application of multiple seasonal autoregressive integrated moving average model in predicting the mumps incidence]. Hui S; Chen L; Liu F; Ouyang Y Zhonghua Yu Fang Yi Xue Za Zhi; 2015 Dec; 49(12):1042-6. PubMed ID: 26887296 [TBL] [Abstract][Full Text] [Related]
7. Study on the National Monthly Reported Severe Cases of Hand-foot-mouth Disease Forecasted by Autoregressive Integrated Moving Average Model. Zhang S; Qiu Q; Wang Y Bing Du Xue Bao; 2017 Jan; 33(1):77-81. PubMed ID: 30702825 [TBL] [Abstract][Full Text] [Related]
8. Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network (NARNN) in forecasting incidence cases of HFMD in Shenzhen, China. Yu L; Zhou L; Tan L; Jiang H; Wang Y; Wei S; Nie S PLoS One; 2014; 9(6):e98241. PubMed ID: 24893000 [TBL] [Abstract][Full Text] [Related]
9. Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China. Du Z; Xu L; Zhang W; Zhang D; Yu S; Hao Y BMJ Open; 2017 Oct; 7(10):e016263. PubMed ID: 28988169 [TBL] [Abstract][Full Text] [Related]
10. [Analysis on the spatial-temporal characteristics of hand-foot-mouth disease in Shaanxi province, 2009-2013]. Bai Y; Liu K; Gu X; Zhang KJ; Yuan XJ; Shao ZJ Zhonghua Liu Xing Bing Xue Za Zhi; 2018 Sep; 39(9):1152-1158. PubMed ID: 30293302 [No Abstract] [Full Text] [Related]
11. Time-series modelling and forecasting of hand, foot and mouth disease cases in China from 2008 to 2018. Tian CW; Wang H; Luo XM Epidemiol Infect; 2019 Jan; 147():e82. PubMed ID: 30868999 [TBL] [Abstract][Full Text] [Related]
12. [Dynamics and epidemiological characteristics of hand, foot and mouth disease in Shaanxi province, 2009-2018]. Chen S; Zhao B; Liu Y; Zhang Y; Ning SS Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Sep; 40(9):1120-1124. PubMed ID: 31594157 [No Abstract] [Full Text] [Related]
13. Development and evaluation of a deep learning approach for modeling seasonality and trends in hand-foot-mouth disease incidence in mainland China. Wang Y; Xu C; Zhang S; Yang L; Wang Z; Zhu Y; Yuan J Sci Rep; 2019 May; 9(1):8046. PubMed ID: 31142826 [TBL] [Abstract][Full Text] [Related]
14. A hybrid model for hand-foot-mouth disease prediction based on ARIMA-EEMD-LSTM. Wan Y; Song P; Liu J; Xu X; Lei X BMC Infect Dis; 2023 Dec; 23(1):879. PubMed ID: 38102558 [TBL] [Abstract][Full Text] [Related]
15. [Application of ARIMA model in predicting the incidence of tuberculosis in China from 2018 to 2019]. Yan CQ; Wang RB; Liu HC; Jiang Y; Li MC; Yin SP; Xiao TY; Wan KL; Rang WQ Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Jun; 40(6):633-637. PubMed ID: 31238610 [No Abstract] [Full Text] [Related]
16. Impact of weather factors on hand, foot and mouth disease, and its role in short-term incidence trend forecast in Huainan City, Anhui Province. Zhao D; Wang L; Cheng J; Xu J; Xu Z; Xie M; Yang H; Li K; Wen L; Wang X; Zhang H; Wang S; Su H Int J Biometeorol; 2017 Mar; 61(3):453-461. PubMed ID: 27557791 [TBL] [Abstract][Full Text] [Related]
17. [Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model]. Ke-Wei W; Yu W; Jin-Ping L; Yu-Yu J Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jul; 28(6):630-634. PubMed ID: 29469251 [TBL] [Abstract][Full Text] [Related]
18. Application of a combined model with seasonal autoregressive integrated moving average and support vector regression in forecasting hand-foot-mouth disease incidence in Wuhan, China. Zou JJ; Jiang GF; Xie XX; Huang J; Yang XB Medicine (Baltimore); 2019 Feb; 98(6):e14195. PubMed ID: 30732135 [TBL] [Abstract][Full Text] [Related]
19. [Study on the feasibility for ARIMA model application to predict malaria incidence in an unstable malaria area]. Zhu JM; Tang LH; Zhou SS; Huang F Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2007 Jun; 25(3):232-6. PubMed ID: 18038786 [TBL] [Abstract][Full Text] [Related]
20. Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China. Zhang R; Guo Z; Meng Y; Wang S; Li S; Niu R; Wang Y; Guo Q; Li Y Int J Environ Res Public Health; 2021 Jun; 18(11):. PubMed ID: 34200378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]