These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

666 related articles for article (PubMed ID: 27539509)

  • 1. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice.
    Lee IC; Lin WM; Shu JC; Tsai SW; Chen CH; Tsai MT
    J Biomed Mater Res A; 2017 Jan; 105(1):84-93. PubMed ID: 27539509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin.
    Yu W; Jiang G; Zhang Y; Liu D; Xu B; Zhou J
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():187-196. PubMed ID: 28866156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolving Microneedle Patches for Transdermal Insulin Delivery in Diabetic Mice: Potential for Clinical Applications.
    Chen CH; Shyu VB; Chen CT
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30189671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats.
    Ling MH; Chen MC
    Acta Biomater; 2013 Nov; 9(11):8952-61. PubMed ID: 23816646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of composite microneedles integrated with insulin-loaded CaCO
    Liu D; Yu B; Jiang G; Yu W; Zhang Y; Xu B
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():180-188. PubMed ID: 29853081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin.
    Chen MC; Ling MH; Kusuma SJ
    Acta Biomater; 2015 Sep; 24():106-16. PubMed ID: 26102333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dissolving and glucose-responsive insulin-releasing microneedle patch for type 1 diabetes therapy.
    Zhang Y; Wu M; Tan D; Liu Q; Xia R; Chen M; Liu Y; Xue L; Lei Y
    J Mater Chem B; 2021 Jan; 9(3):648-657. PubMed ID: 33306077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin.
    Yu W; Jiang G; Liu D; Li L; Chen H; Liu Y; Huang Q; Tong Z; Yao J; Kong X
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():725-734. PubMed ID: 27987766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin.
    Seong KY; Seo MS; Hwang DY; O'Cearbhaill ED; Sreenan S; Karp JM; Yang SY
    J Control Release; 2017 Nov; 265():48-56. PubMed ID: 28344013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery.
    Migalska K; Morrow DI; Garland MJ; Thakur R; Woolfson AD; Donnelly RF
    Pharm Res; 2011 Aug; 28(8):1919-30. PubMed ID: 21437789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery.
    Lee IC; He JS; Tsai MT; Lin KC
    J Mater Chem B; 2015 Jan; 3(2):276-285. PubMed ID: 32261948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery.
    Lau S; Fei J; Liu H; Chen W; Liu R
    J Control Release; 2017 Nov; 265():113-119. PubMed ID: 27574991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoemulsion-based dissolving microneedle arrays for enhanced intradermal and transdermal delivery.
    Nasiri MI; Vora LK; Ershaid JA; Peng K; Tekko IA; Donnelly RF
    Drug Deliv Transl Res; 2022 Apr; 12(4):881-896. PubMed ID: 34939170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative freeze-drying technique in the fabrication of dissolving microneedle patch: Enhancing transdermal drug delivery efficiency.
    Su T; Tang Z; Hu J; Zhu Y; Shen T
    Drug Deliv Transl Res; 2024 Nov; 14(11):3112-3127. PubMed ID: 38431532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Touch-actuated microneedle array patch for closed-loop transdermal drug delivery.
    Yang J; Chen Z; Ye R; Li J; Lin Y; Gao J; Ren L; Liu B; Jiang L
    Drug Deliv; 2018 Nov; 25(1):1728-1739. PubMed ID: 30182757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A patchless dissolving microneedle delivery system enabling rapid and efficient transdermal drug delivery.
    Lahiji SF; Dangol M; Jung H
    Sci Rep; 2015 Jan; 5():7914. PubMed ID: 25604728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microneedle-iontophoresis combinations for enhanced transdermal drug delivery.
    Donnelly RF; Garland MJ; Alkilani AZ
    Methods Mol Biol; 2014; 1141():121-32. PubMed ID: 24567135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery.
    Garland MJ; Caffarel-Salvador E; Migalska K; Woolfson AD; Donnelly RF
    J Control Release; 2012 Apr; 159(1):52-9. PubMed ID: 22265694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the fabrication and characterization of tip-loaded dissolving microneedles for transdermal drug delivery.
    Zhuang J; Rao F; Wu D; Huang Y; Xu H; Gao W; Zhang J; Sun J
    Eur J Pharm Biopharm; 2020 Dec; 157():66-73. PubMed ID: 33059004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.