These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 27539557)
1. Co-amorphous Formation Induced by Combination of Tranilast and Diphenhydramine Hydrochloride. Ueda H; Kadota K; Imono M; Ito T; Kunita A; Tozuka Y J Pharm Sci; 2017 Jan; 106(1):123-128. PubMed ID: 27539557 [TBL] [Abstract][Full Text] [Related]
2. A Strategy for Co-former Selection to Design Stable Co-amorphous Formations Based on Physicochemical Properties of Non-steroidal Inflammatory Drugs. Ueda H; Muranushi N; Sakuma S; Ida Y; Endoh T; Kadota K; Tozuka Y Pharm Res; 2016 Apr; 33(4):1018-29. PubMed ID: 26700604 [TBL] [Abstract][Full Text] [Related]
3. Design of a Stable Coamorphous System Using Lactose as an Antiplasticizing Agent for Diphenhydramine Hydrochloride with a Low Glass Transition Temperature. Ueda H; Hirakawa Y; Miyano T; Imono M; Tse JY; Uchiyama H; Tozuka Y; Kadota K Mol Pharm; 2022 Apr; 19(4):1209-1218. PubMed ID: 35316068 [TBL] [Abstract][Full Text] [Related]
4. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Chieng N; Aaltonen J; Saville D; Rades T Eur J Pharm Biopharm; 2009 Jan; 71(1):47-54. PubMed ID: 18644443 [TBL] [Abstract][Full Text] [Related]
5. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions. Aso Y; Yoshioka S; Kojima S J Pharm Sci; 2004 Feb; 93(2):384-91. PubMed ID: 14705195 [TBL] [Abstract][Full Text] [Related]
6. Molecular Dynamics and Physical Stability of Pharmaceutical Co-amorphous Systems: Correlation Between Structural Relaxation Times Measured by Kohlrausch-Williams-Watts With the Width of the Glass Transition Temperature (ΔT Chieng N; Teo X; Cheah MH; Choo ML; Chung J; Hew TK; Keng PS J Pharm Sci; 2019 Dec; 108(12):3848-3858. PubMed ID: 31542436 [TBL] [Abstract][Full Text] [Related]
7. Glass transition and enthalpy relaxation of amorphous lactose glass. Haque MK; Kawai K; Suzuki T Carbohydr Res; 2006 Aug; 341(11):1884-9. PubMed ID: 16709405 [TBL] [Abstract][Full Text] [Related]
10. Tranilast-matrine co-amorphous system: Strong intermolecular interactions, improved solubility, and physiochemical stability. Hu D; Chen X; Li D; Zhang H; Duan Y; Huang Y Int J Pharm; 2023 Mar; 635():122707. PubMed ID: 36764418 [TBL] [Abstract][Full Text] [Related]
11. Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability. Alhalaweh A; Alzghoul A; Mahlin D; Bergström CAS Int J Pharm; 2015 Nov; 495(1):312-317. PubMed ID: 26341321 [TBL] [Abstract][Full Text] [Related]
12. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance. Alie J; Menegotto J; Cardon P; Duplaa H; Caron A; Lacabanne C; Bauer M J Pharm Sci; 2004 Jan; 93(1):218-33. PubMed ID: 14648651 [TBL] [Abstract][Full Text] [Related]
13. Dipolar Reorientations in Amorphous Nimesulide: A TSDC and DSC Study. Moura Ramos JJ; Diogo HP Curr Drug Deliv; 2017; 14(1):91-98. PubMed ID: 27160253 [TBL] [Abstract][Full Text] [Related]
14. Effect of counterions on the properties of amorphous atorvastatin salts. Sonje VM; Kumar L; Puri V; Kohli G; Kaushal AM; Bansal AK Eur J Pharm Sci; 2011 Nov; 44(4):462-70. PubMed ID: 21907794 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamics, molecular mobility and crystallization kinetics of amorphous griseofulvin. Zhou D; Zhang GG; Law D; Grant DJ; Schmitt EA Mol Pharm; 2008; 5(6):927-36. PubMed ID: 19434849 [TBL] [Abstract][Full Text] [Related]
16. Effect of pH, polymer concentration and molecular weight on the physical state properties of tolfenamic acid. Sheraz MA; Ahmed S; Ur Rehman I Pharm Dev Technol; 2015 May; 20(3):352-60. PubMed ID: 24417663 [TBL] [Abstract][Full Text] [Related]
17. Solid state characterization of azelnidipine-oxalic acid co-crystal and co-amorphous complexes: The effect of different azelnidipine polymorphs. Pan Y; Pang W; Lv J; Wang J; Yang C; Guo W J Pharm Biomed Anal; 2017 May; 138():302-315. PubMed ID: 28237872 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of co-amorphous Ritonavir-Indomethacin systems by solvent evaporation technique: improved dissolution behavior and physical stability without evidence of intermolecular interactions. Dengale SJ; Ranjan OP; Hussen SS; Krishna BS; Musmade PB; Gautham Shenoy G; Bhat K Eur J Pharm Sci; 2014 Oct; 62():57-64. PubMed ID: 24878386 [TBL] [Abstract][Full Text] [Related]
19. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1: preparation, stability and dissolution enhancement. Löbmann K; Grohganz H; Laitinen R; Strachan C; Rades T Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):873-81. PubMed ID: 23537574 [TBL] [Abstract][Full Text] [Related]
20. Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling. Lim AW; Löbmann K; Grohganz H; Rades T; Chieng N J Pharm Pharmacol; 2016 Jan; 68(1):36-45. PubMed ID: 26663364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]