These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27539563)

  • 41. Thermodynamic properties of model solids with short-ranged potentials from Monte Carlo simulations and perturbation theory.
    Díez A; Largo J; Solana JR
    J Phys Chem B; 2007 Aug; 111(34):10194-201. PubMed ID: 17683133
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Maier-Saupe model of polymer nematics: Comparing free energies calculated with Self Consistent Field theory and Monte Carlo simulations.
    Greco C; Jiang Y; Chen JZ; Kremer K; Daoulas KC
    J Chem Phys; 2016 Nov; 145(18):184901. PubMed ID: 27846703
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Configurational probabilities for monomers, dimers and trimers in fluids.
    Chen Y; Wetzel TE; Aranovich GL; Donohue MD
    Phys Chem Chem Phys; 2008 Oct; 10(38):5840-7. PubMed ID: 18818836
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computer simulation of adsorption on nanoparticles: the case of attractive interactions.
    Pinto OA; López de Mishima BA; Leiva EP; Oviedo OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061602. PubMed ID: 23367959
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lattice-gas Monte Carlo study of adsorption in pores.
    Trasca RA; Calbi MM; Cole MW; Riccardo JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011605. PubMed ID: 14995631
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method.
    Hantal G; Picaud S; Hoang PN; Voloshin VP; Medvedev NN; Jedlovszky P
    J Chem Phys; 2010 Oct; 133(14):144702. PubMed ID: 20950025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Entropy-driven phases at high coverage adsorption of straight rigid rods on three-dimensional cubic lattices.
    Pasinetti PM; Ramirez-Pastor AJ; Vogel EE
    Phys Rev E; 2023 Jun; 107(6-1):064126. PubMed ID: 37464669
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of the surface heterogeneity in adsorption of hydrogen ions on metal oxides: theory and simulations.
    Zarzycki P; Szabelski P; Charmas R
    J Comput Chem; 2005 Jul; 26(10):1079-88. PubMed ID: 15898108
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the definition of a Monte Carlo model for binary crystal growth.
    Los JH; van Enckevort WJ; Meekes H; Vlieg E
    J Phys Chem B; 2007 Feb; 111(4):782-91. PubMed ID: 17249822
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adsorption of C2-C5 alcohols on ice: A grand canonical Monte Carlo simulation study.
    Joliat J; Picaud S; Patt A; Jedlovszky P
    J Chem Phys; 2022 Jun; 156(22):224702. PubMed ID: 35705408
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of the adsorption isotherm of methanol on the surface of ice. An experimental and grand canonical Monte Carlo simulation study.
    Jedlovszky P; Pártay L; Hoang PN; Picaud S; von Hessberg P; Crowley JN
    J Am Chem Soc; 2006 Nov; 128(47):15300-9. PubMed ID: 17117883
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monte Carlo simulation of mixed lennard-jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Nov; 23(23):11580-6. PubMed ID: 17918866
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of an equation of state for electrolyte solutions by combining the statistical associating fluid theory and the mean spherical approximation for the nonprimitive model.
    Zhao H; dos Ramos MC; McCabe C
    J Chem Phys; 2007 Jun; 126(24):244503. PubMed ID: 17614560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simulating adsorptive expansion of zeolites: application to biomass-derived solutions in contact with silicalite.
    Santander JE; Tsapatsis M; Auerbach SM
    Langmuir; 2013 Apr; 29(15):4866-76. PubMed ID: 23495719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simulation study for adsorption-induced structural transition in stacked-layer porous coordination polymers: equilibrium and hysteretic adsorption behaviors.
    Numaguchi R; Tanaka H; Watanabe S; Miyahara MT
    J Chem Phys; 2013 Feb; 138(5):054708. PubMed ID: 23406142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microscopic structure and thermodynamics of a core-softened model fluid: insights from grand canonical Monte Carlo simulations and integral equations theory.
    Pizio O; Dominguez H; Duda Y; Sokołowski S
    J Chem Phys; 2009 May; 130(17):174504. PubMed ID: 19425787
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lattice model of adsorption in disordered porous materials: mean-field density functional theory and Monte Carlo simulations.
    Sarkisov L; Monson PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011202. PubMed ID: 11800685
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A computational study of electrolyte adsorption in a simple model for intercalated clays.
    Lomba E; Weis JJ
    J Chem Phys; 2010 Mar; 132(10):104705. PubMed ID: 20232982
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.
    Boulougouris GC
    J Comput Chem; 2014 May; 35(13):1024-35. PubMed ID: 24664967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.