BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27539613)

  • 1. Evidence of H3 K27M mutations in posterior fossa ependymomas.
    Gessi M; Capper D; Sahm F; Huang K; von Deimling A; Tippelt S; Fleischhack G; Scherbaum D; Alfer J; Juhnke BO; von Hoff K; Rutkowski S; Warmuth-Metz M; Chavez L; Pfister SM; Pietsch T; Jones DT; Sturm D
    Acta Neuropathol; 2016 Oct; 132(4):635-7. PubMed ID: 27539613
    [No Abstract]   [Full Text] [Related]  

  • 2. H3 K27M mutations are extremely rare in posterior fossa group A ependymoma.
    Ryall S; Guzman M; Elbabaa SK; Luu B; Mack SC; Zapotocky M; Taylor MD; Hawkins C; Ramaswamy V
    Childs Nerv Syst; 2017 Jul; 33(7):1047-1051. PubMed ID: 28623522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas.
    Pajtler KW; Wen J; Sill M; Lin T; Orisme W; Tang B; Hübner JM; Ramaswamy V; Jia S; Dalton JD; Haupfear K; Rogers HA; Punchihewa C; Lee R; Easton J; Wu G; Ritzmann TA; Chapman R; Chavez L; Boop FA; Klimo P; Sabin ND; Ogg R; Mack SC; Freibaum BD; Kim HJ; Witt H; Jones DTW; Vo B; Gajjar A; Pounds S; Onar-Thomas A; Roussel MF; Zhang J; Taylor JP; Merchant TE; Grundy R; Tatevossian RG; Taylor MD; Pfister SM; Korshunov A; Kool M; Ellison DW
    Acta Neuropathol; 2018 Aug; 136(2):211-226. PubMed ID: 29909548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma.
    Michealraj KA; Kumar SA; Kim LJY; Cavalli FMG; Przelicki D; Wojcik JB; Delaidelli A; Bajic A; Saulnier O; MacLeod G; Vellanki RN; Vladoiu MC; Guilhamon P; Ong W; Lee JJY; Jiang Y; Holgado BL; Rasnitsyn A; Malik AA; Tsai R; Richman CM; Juraschka K; Haapasalo J; Wang EY; De Antonellis P; Suzuki H; Farooq H; Balin P; Kharas K; Van Ommeren R; Sirbu O; Rastan A; Krumholtz SL; Ly M; Ahmadi M; Deblois G; Srikanthan D; Luu B; Loukides J; Wu X; Garzia L; Ramaswamy V; Kanshin E; Sánchez-Osuna M; El-Hamamy I; Coutinho FJ; Prinos P; Singh S; Donovan LK; Daniels C; Schramek D; Tyers M; Weiss S; Stein LD; Lupien M; Wouters BG; Garcia BA; Arrowsmith CH; Sorensen PH; Angers S; Jabado N; Dirks PB; Mack SC; Agnihotri S; Rich JN; Taylor MD
    Cell; 2020 Jun; 181(6):1329-1345.e24. PubMed ID: 32445698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma.
    Hübner JM; Müller T; Papageorgiou DN; Mauermann M; Krijgsveld J; Russell RB; Ellison DW; Pfister SM; Pajtler KW; Kool M
    Neuro Oncol; 2019 Jul; 21(7):878-889. PubMed ID: 30923826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TERT promoter mutation and chromosome 6 loss define a high-risk subtype of ependymoma evolving from posterior fossa subependymoma.
    Thomas C; Thierfelder F; Träger M; Soschinski P; Müther M; Edelmann D; Förster A; Geiler C; Kim HY; Filipski K; Harter PN; Schittenhelm J; Eckert F; Ntoulias G; May SA; Stummer W; Onken J; Vajkoczy P; Schüller U; Heppner FL; Capper D; Koch A; Kaul D; Paulus W; Hasselblatt M; Schweizer L
    Acta Neuropathol; 2021 Jun; 141(6):959-970. PubMed ID: 33755803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent ACVR1 mutations in posterior fossa ependymoma.
    Pratt D; Lucas CG; Selvam PP; Abdullaev Z; Ketchum C; Quezado M; Armstrong TS; Gilbert MR; Papanicolau-Sengos A; Raffeld M; Choo-Wosoba H; Chan P; Whipple N; Nasrallah M; Santi M; Ramaswamy V; Giannini C; Ritzmann TA; Grundy RG; Burford A; Jones C; Hawkins C; Venneti S; Solomon DA; Aldape K
    Acta Neuropathol; 2022 Aug; 144(2):373-376. PubMed ID: 35587280
    [No Abstract]   [Full Text] [Related]  

  • 8. Understanding the Deadly Silence of Posterior Fossa A Ependymoma.
    Lin GL; Monje M
    Mol Cell; 2020 Jun; 78(6):999-1001. PubMed ID: 32559429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved risk-stratification for posterior fossa ependymoma of childhood considering clinical, histological and genetic features - a retrospective analysis of the HIT ependymoma trial cohort.
    Jünger ST; Mynarek M; Wohlers I; Dörner E; Mühlen AZ; Velez-Char N; von Hoff K; Rutkowski S; Warmuth-Metz M; Kortmann RD; Timmermann B; Rahmann S; Klein-Hitpass L; von Bueren AO; Pietsch T
    Acta Neuropathol Commun; 2019 Nov; 7(1):181. PubMed ID: 31727173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytogenetic study of 33 ependymomas.
    Vagner-Capodano AM; Zattara-Cannoni H; Gambarelli D; Figarella-Branger D; Lena G; Dufour H; Grisoli F; Choux M
    Cancer Genet Cytogenet; 1999 Dec; 115(2):96-9. PubMed ID: 10598140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ependymomas in infancy: underlying genetic alterations, histological features, and clinical outcome.
    Jünger ST; Andreiuolo F; Mynarek M; Dörner E; Zur Mühlen A; Rutkowski S; von Bueren AO; Pietsch T
    Childs Nerv Syst; 2020 Nov; 36(11):2693-2700. PubMed ID: 32474813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular genetics of ependymomas and pediatric diffuse gliomas: a short review.
    Nobusawa S; Hirato J; Yokoo H
    Brain Tumor Pathol; 2014 Oct; 31(4):229-33. PubMed ID: 25182241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome 1q gain and tenascin-C expression are candidate markers to define different risk groups in pediatric posterior fossa ependymoma.
    Araki A; Chocholous M; Gojo J; Dorfer C; Czech T; Heinzl H; Dieckmann K; Ambros IM; Ambros PF; Slavc I; Haberler C
    Acta Neuropathol Commun; 2016 Aug; 4(1):88. PubMed ID: 27550150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candidate genes on chromosome 9q33-34 involved in the progression of childhood ependymomas.
    Puget S; Grill J; Valent A; Bieche I; Dantas-Barbosa C; Kauffmann A; Dessen P; Lacroix L; Geoerger B; Job B; Dirven C; Varlet P; Peyre M; Dirks PB; Sainte-Rose C; Vassal G
    J Clin Oncol; 2009 Apr; 27(11):1884-92. PubMed ID: 19289631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EZHIP: a new piece of the puzzle towards understanding pediatric posterior fossa ependymoma.
    Jenseit A; Camgöz A; Pfister SM; Kool M
    Acta Neuropathol; 2022 Jan; 143(1):1-13. PubMed ID: 34762160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of global 5-hydroxymethylcytosine in pediatric posterior fossa ependymoma.
    Wu T; Zhang ZW; Li S; Wang B; Yang Z; Li P; Zhang J; Tong WM; Li C; Zhao F; Niu Y; Liu P
    Clin Epigenetics; 2020 Jan; 12(1):19. PubMed ID: 31992357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of chromosome 1q gain in intracranial ependymomas.
    Rajeshwari M; Sharma MC; Kakkar A; Nambirajan A; Suri V; Sarkar C; Singh M; Saran RK; Gupta RK
    J Neurooncol; 2016 Apr; 127(2):271-8. PubMed ID: 26725097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidermal growth factor receptor overexpression is common and not correlated to gene copy number in ependymoma.
    Friedrich C; von Bueren AO; Kolevatova L; Bernreuther C; Grob T; Sepulveda-Falla D; van den Boom L; Westphal M; Simon R; Glatzel M
    Childs Nerv Syst; 2016 Feb; 32(2):281-90. PubMed ID: 26686534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered MicroRNA Expression Is Associated with Tumor Grade, Molecular Background and Outcome in Childhood Infratentorial Ependymoma.
    Zakrzewska M; Fendler W; Zakrzewski K; Sikorska B; Grajkowska W; Dembowska-Bagińska B; Filipek I; Stefańczyk Ł; Liberski PP
    PLoS One; 2016; 11(7):e0158464. PubMed ID: 27390862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular predictive and prognostic factors in ependymoma.
    Benson R; Mallick S; Julka PK; Rath GK
    Neurol India; 2016; 64(2):279-86. PubMed ID: 26954807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.