These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 27539644)
1. Selective and Sensitive Fluorescent Detection of Picric Acid by New Pyrene and Anthracene Based Copper Complexes. Reddy KL; Kumar AM; Dhir A; Krishnan V J Fluoresc; 2016 Nov; 26(6):2041-2046. PubMed ID: 27539644 [TBL] [Abstract][Full Text] [Related]
2. A Pyrene-Rhodamine FRET couple as a chemosensor for selective detection of picric acid. Charan Behera K; Mallick D; Narayan Patra B; Bag B Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120934. PubMed ID: 35101722 [TBL] [Abstract][Full Text] [Related]
3. Pyrene-Based Chemosensor for Picric Acid-Fundamentals to Smartphone Device Design. Kathiravan A; Gowri A; Khamrang T; Kumar MD; Dhenadhayalan N; Lin KC; Velusamy M; Jaccob M Anal Chem; 2019 Oct; 91(20):13244-13250. PubMed ID: 31542920 [TBL] [Abstract][Full Text] [Related]
5. Charge-Transfer-Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid. Santra DC; Bera MK; Sukul PK; Malik S Chemistry; 2016 Feb; 22(6):2012-2019. PubMed ID: 26743445 [TBL] [Abstract][Full Text] [Related]
6. Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips. Patel R; Bothra S; Kumar R; Crisponi G; Sahoo SK Biosens Bioelectron; 2018 Apr; 102():196-203. PubMed ID: 29145072 [TBL] [Abstract][Full Text] [Related]
7. Highly selective fluorescence 'turn off' sensing of picric acid and efficient cell labelling by water-soluble luminescent anthracene-bridged poly(N-vinyl pyrrolidone). Singh R; Mitra K; Singh S; Senapati S; Patel VK; Vishwakarma S; Kumari A; Singh J; Sen Gupta SK; Misra N; Maiti P; Ray B Analyst; 2019 May; 144(11):3620-3634. PubMed ID: 31070612 [TBL] [Abstract][Full Text] [Related]
8. Anthracene based AIEgen for picric acid detection in real water samples. Gowri A; Vignesh R; Kathiravan A Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117144. PubMed ID: 31141777 [TBL] [Abstract][Full Text] [Related]
9. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium. Liu SG; Luo D; Li N; Zhang W; Lei JL; Li NB; Luo HQ ACS Appl Mater Interfaces; 2016 Aug; 8(33):21700-9. PubMed ID: 27471907 [TBL] [Abstract][Full Text] [Related]
10. A FRET-based fluorescent and colorimetric probe for the specific detection of picric acid. Zhang E; Ju P; Guo P; Hou X; Hou X; Lv H; Wang JJ; Zhang Y RSC Adv; 2018 Sep; 8(55):31658-31665. PubMed ID: 35548203 [TBL] [Abstract][Full Text] [Related]
11. Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters. Zhang JR; Yue YY; Luo HQ; Li NB Analyst; 2016 Feb; 141(3):1091-7. PubMed ID: 26661456 [TBL] [Abstract][Full Text] [Related]
12. Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range. Hariharan PS; Pitchaimani J; Madhu V; Anthony SP J Fluoresc; 2016 Mar; 26(2):395-401. PubMed ID: 26585348 [TBL] [Abstract][Full Text] [Related]
13. On the combination of luminescent rare earth MOF and rhodamine dopant with two sensing channels for picric acid. Fan Y; Cheng X; Xue G; Wu J; Huang Z Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():210-217. PubMed ID: 30690304 [TBL] [Abstract][Full Text] [Related]
14. Macromolecular Systems with MSA-Capped CdTe and CdTe/ZnS Core/Shell Quantum Dots as Superselective and Ultrasensitive Optical Sensors for Picric Acid Explosive. Dutta P; Saikia D; Adhikary NC; Sarma NS ACS Appl Mater Interfaces; 2015 Nov; 7(44):24778-90. PubMed ID: 26484725 [TBL] [Abstract][Full Text] [Related]
15. Anthracene-based fluorescent probe: Synthesis, characterization, aggregation-induced emission, mechanochromism, and sensing of nitroaromatics in aqueous media. Duraimurugan K; Harikrishnan M; Madhavan J; Siva A; Lee SJ; Theerthagiri J; Choi MY Environ Res; 2021 Mar; 194():110741. PubMed ID: 33450234 [TBL] [Abstract][Full Text] [Related]
16. Tellurium Containing Long Lived Emissive Fluorophore for Selective and Visual Detection of Picric Acid through Photo-Induced Electron Transfer. Banerjee B; Ali A; Kumar S; Verma RK; Verma VK; Singh RC Chempluschem; 2024 Aug; 89(8):e202400035. PubMed ID: 38552142 [TBL] [Abstract][Full Text] [Related]
17. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution. Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223 [TBL] [Abstract][Full Text] [Related]
18. A versatile chemosensor for the detection of Al Naskar B; Bauzá A; Frontera A; Maiti DK; Das Mukhopadhyay C; Goswami S Dalton Trans; 2018 Nov; 47(44):15907-15916. PubMed ID: 30374503 [TBL] [Abstract][Full Text] [Related]
19. Benzimidazole derivatives: selective fluorescent chemosensors for the picogram detection of picric acid. Xiong JF; Li JX; Mo GZ; Huo JP; Liu JY; Chen XY; Wang ZY J Org Chem; 2014 Dec; 79(23):11619-30. PubMed ID: 25387225 [TBL] [Abstract][Full Text] [Related]
20. A perylene monoimide probe based fluorescent micelle sensor for the selective and sensitive detection of picric acid. Li W; Zhou H; Hayat Nawaz MA; Niu N; Yang N; Ren J; Yu C Anal Methods; 2020 Nov; 12(44):5353-5359. PubMed ID: 33104151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]