These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27539738)

  • 41. Time-resolved generation of membrane potential by ba
    Siletsky SA; Belevich I; Belevich NP; Soulimane T; Wikström M
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):915-926. PubMed ID: 28807731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results.
    Blomberg MRA; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):884-894. PubMed ID: 28801051
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase.
    Muramoto K; Hirata K; Shinzawa-Itoh K; Yoko-o S; Yamashita E; Aoyama H; Tsukihara T; Yoshikawa S
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7881-6. PubMed ID: 17470809
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Understanding the cytochrome c oxidase proton pump: thermodynamics of redox linkage.
    Musser SM; Chan SI
    Biophys J; 1995 Jun; 68(6):2543-55. PubMed ID: 7647257
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Redox-coupled proton pumping in cytochrome c oxidase: further insights from computer simulation.
    Xu J; Voth GA
    Biochim Biophys Acta; 2008 Feb; 1777(2):196-201. PubMed ID: 18155154
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electron transfer and proton pumping in cytochrome oxidase.
    Brunori M; Wilson MT
    Biochimie; 1995; 77(7-8):668-76. PubMed ID: 8589077
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of the kinetics of the membrane potential generated by cytochrome c oxidase upon single electron injection.
    Medvedev DM; Medvedev ES; Kotelnikov AI; Stuchebrukhov AA
    Biochim Biophys Acta; 2005 Nov; 1710(1):47-56. PubMed ID: 16242114
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional hydration and conformational gating of proton uptake in cytochrome c oxidase.
    Henry RM; Yu CH; Rodinger T; Pomès R
    J Mol Biol; 2009 Apr; 387(5):1165-85. PubMed ID: 19248790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glutamic acid 242 is a valve in the proton pump of cytochrome c oxidase.
    Kaila VR; Verkhovsky MI; Hummer G; Wikström M
    Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6255-9. PubMed ID: 18430799
    [TBL] [Abstract][Full Text] [Related]  

  • 50. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site.
    Capitanio G; Martino PL; Capitanio N; De Nitto E; Papa S
    Biochemistry; 2006 Feb; 45(6):1930-7. PubMed ID: 16460039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases.
    Brändén M; Namslauer A; Hansson O; Aasa R; Brzezinski P
    Biochemistry; 2003 Nov; 42(45):13178-84. PubMed ID: 14609328
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Water chain formation and possible proton pumping routes in Rhodobacter sphaeroides cytochrome c oxidase: a molecular dynamics comparison of the wild type and R481K mutant.
    Seibold SA; Mills DA; Ferguson-Miller S; Cukier RI
    Biochemistry; 2005 Aug; 44(31):10475-85. PubMed ID: 16060656
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of the K-channel and the active-site tyrosine in the catalytic mechanism of cytochrome c oxidase.
    Sharma V; Wikström M
    Biochim Biophys Acta; 2016 Aug; 1857(8):1111-1115. PubMed ID: 26898520
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamics of the glutamic acid 242 side chain in cytochrome c oxidase.
    Tuukkanen A; Kaila VR; Laakkonen L; Hummer G; Wikström M
    Biochim Biophys Acta; 2007 Sep; 1767(9):1102-6. PubMed ID: 17706938
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Allosteric Cooperativity in Proton Energy Conversion in A1-Type Cytochrome c Oxidase.
    Capitanio G; Palese LL; Papa F; Papa S
    J Mol Biol; 2020 Jan; 432(2):534-551. PubMed ID: 31626808
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proton transfer in uncoupled variants of cytochrome c oxidase.
    Vilhjálmsdóttir J; Albertsson I; Blomberg MRA; Ädelroth P; Brzezinski P
    FEBS Lett; 2020 Mar; 594(5):813-822. PubMed ID: 31725900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protonation-State-Dependent Communication in Cytochrome c Oxidase.
    Bagherpoor Helabad M; Ghane T; Reidelbach M; Woelke AL; Knapp EW; Imhof P
    Biophys J; 2017 Aug; 113(4):817-828. PubMed ID: 28834718
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring the entrance of proton pathways in cytochrome c oxidase from Paracoccus denitrificans: surface charge, buffer capacity and redox-dependent polarity changes at the internal surface.
    Kirchberg K; Michel H; Alexiev U
    Biochim Biophys Acta; 2013 Mar; 1827(3):276-84. PubMed ID: 23123516
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase.
    Brzezinski P; Johansson AL
    Biochim Biophys Acta; 2010; 1797(6-7):710-23. PubMed ID: 20184858
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insights into the mechanism of proton transport in cytochrome c oxidase.
    Yamashita T; Voth GA
    J Am Chem Soc; 2012 Jan; 134(2):1147-52. PubMed ID: 22191804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.