BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27539945)

  • 1. Thermo-reversible capture and release of DNA by zwitterionic surfactants.
    Feng L; Xu L; Dong S; Hao J
    Soft Matter; 2016 Sep; 12(36):7495-504. PubMed ID: 27539945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational and phase transitions in DNA--photosensitive surfactant solutions: Experiment and modeling.
    Kasyanenko N; Lysyakova L; Ramazanov R; Nesterenko A; Yaroshevich I; Titov E; Alexeev G; Lezov A; Unksov I
    Biopolymers; 2015 Feb; 103(2):109-22. PubMed ID: 25302479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-dissolution and de-compaction of DNA-cationic surfactant complexes using non-ionic surfactants.
    Corbyn CP; Fletcher PD; Gemici R; Dias RS; Miguel MG
    Phys Chem Chem Phys; 2009 Dec; 11(48):11568-76. PubMed ID: 20024429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between DNA and cationic surfactants: effect of DNA conformation and surfactant headgroup.
    Dias RS; Magno LM; Valente AJ; Das D; Das PK; Maiti S; Miguel MG; Lindman B
    J Phys Chem B; 2008 Nov; 112(46):14446-52. PubMed ID: 18774843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoluminescent and pH-responsive supramolecular structures from co-assembly of carbon quantum dots and zwitterionic surfactant micelles.
    Sun X; Chen M; Zhang Y; Yin Y; Zhang L; Li H; Hao J
    J Mater Chem B; 2018 Nov; 6(43):7021-7032. PubMed ID: 32254585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions with ctDNA of novel sugar-based gemini cationic surfactants.
    Cai K; Cheng R; Wang C; Xia Y; Xu T; Gan C
    Int J Biol Macromol; 2020 Aug; 156():805-811. PubMed ID: 32272121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible DNA compaction induced by partial intercalation of 16-Ph-16 gemini surfactants: evidence of triple helix formation.
    Grueso E; Roldan E; Perez-Tejeda P; Kuliszewska E; Molero B; Brecker L; Giráldez-Pérez RM
    Phys Chem Chem Phys; 2018 Oct; 20(38):24902-24914. PubMed ID: 30234871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism and thermodynamics study of plasmid DNA and cationic surfactants interactions.
    Zhu DM; Evans RK
    Langmuir; 2006 Apr; 22(8):3735-43. PubMed ID: 16584250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of novel gemini surfactants containing cycloalkyl side-chains on the structural phases of DNA in solution.
    Pietralik Z; Kumita JR; Dobson CM; Kozak M
    Colloids Surf B Biointerfaces; 2015 Jul; 131():83-92. PubMed ID: 25969417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of hydrophobic interactions in the single-chained cationic surfactant-DNA complexation.
    López-López M; López-Cornejo P; Martín VI; Ostos FJ; Checa-Rodríguez C; Prados-Carvajal R; Lebrón JA; Huertas P; Moyá ML
    J Colloid Interface Sci; 2018 Jul; 521():197-205. PubMed ID: 29571101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the capture and release of DNA with a dual-responsive cationic surfactant.
    Xu L; Feng L; Hao J; Dong S
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8876-85. PubMed ID: 25850815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complexation of DNA with cationic gemini surfactant in aqueous solution.
    Zhao X; Shang Y; Liu H; Hu Y
    J Colloid Interface Sci; 2007 Oct; 314(2):478-83. PubMed ID: 17631886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coil-globule transition of DNA molecules induced by cationic surfactants: a dynamic light scattering study.
    Dias RS; Innerlohinger J; Glatter O; Miguel MG; Lindman B
    J Phys Chem B; 2005 May; 109(20):10458-63. PubMed ID: 16852267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vesicles of a new salt-free cat-anionic fluoro/hydrocarbon surfactant system.
    Li X; Dong S; Jia X; Song A; Hao J
    Chemistry; 2007; 13(34):9495-502. PubMed ID: 17847147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical characterization of complexation of DNA with oppositely charged Gemini surfactant 12-3-12.
    Zhao X; Shang Y; Hu J; Liu H; Hu Y
    Biophys Chem; 2008 Dec; 138(3):144-9. PubMed ID: 18842331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of a biosurfactant, Surfactin with a cationic Gemini surfactant in aqueous solution.
    Jin L; Garamus VM; Liu F; Xiao J; Eckerlebe H; Willumeit-Römer R; Mu B; Zou A
    J Colloid Interface Sci; 2016 Nov; 481():201-9. PubMed ID: 27475707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic size of DNA/cationic gemini surfactant complex as a function of surfactant structure.
    Devínsky F; Pisárcik M; Lacko I
    Gen Physiol Biophys; 2009 Jun; 28(2):160-7. PubMed ID: 19592712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical study of biomolecular interactions between lysosomotropic surfactants and bovine serum albumin.
    Janek T; Czyżnikowska Ż; Łuczyński J; Gudiña EJ; Rodrigues LR; Gałęzowska J
    Colloids Surf B Biointerfaces; 2017 Nov; 159():750-758. PubMed ID: 28886512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size control of styrene oxide-ethylene oxide diblock copolymer aggregates with classical surfactants: DLS, TEM, and ITC study.
    Castro E; Taboada P; Barbosa S; Mosquera V
    Biomacromolecules; 2005; 6(3):1438-47. PubMed ID: 15877363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sticholysins I and II interaction with cationic micelles promotes toxins' conformational changes and enhanced hemolytic activity.
    Lanio ME; Alvarez C; Ochoa C; Ros U; Pazos F; Martínez D; Tejuca M; Eugenio LM; Casallanovo F; Dyszy FH; Schreier S; Lissi E
    Toxicon; 2007 Nov; 50(6):731-9. PubMed ID: 17681582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.