BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27540362)

  • 1. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase.
    Sánchez-Gómez FJ; Díez-Dacal B; García-Martín E; Agúndez JA; Pajares MA; Pérez-Sala D
    Front Pharmacol; 2016; 7():237. PubMed ID: 27540362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability of the Genes Involved in the Cellular Redox Status and Their Implication in Drug Hypersensitivity Reactions.
    Ayuso P; García-Martín E; Agúndez JAG
    Antioxidants (Basel); 2021 Feb; 10(2):. PubMed ID: 33672092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Interactions and Implications of Aldose Reductase Inhibition by PGA1 and Clinically Used Prostaglandins.
    Díez-Dacal B; Sánchez-Gómez FJ; Sánchez-Murcia PA; Milackova I; Zimmerman T; Ballekova J; García-Martín E; Agúndez JA; Gharbi S; Gago F; Stefek M; Pérez-Sala D
    Mol Pharmacol; 2016 Jan; 89(1):42-52. PubMed ID: 26487510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive carbonyls and oxidative stress: potential for therapeutic intervention.
    Ellis EM
    Pharmacol Ther; 2007 Jul; 115(1):13-24. PubMed ID: 17570531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential roles of 3H-1,2-dithiole-3-thione-induced glutathione, glutathione S-transferase and aldose reductase in protecting against 4-hydroxy-2-nonenal toxicity in cultured cardiomyocytes.
    Li Y; Cao Z; Zhu H; Trush MA
    Arch Biochem Biophys; 2005 Jul; 439(1):80-90. PubMed ID: 15946642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aldo-keto reductases and bioactivation/detoxication.
    Jin Y; Penning TM
    Annu Rev Pharmacol Toxicol; 2007; 47():263-92. PubMed ID: 16970545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of aldo-keto reductase AKR1B10 as a selective target for modification and inhibition by prostaglandin A(1): implications for antitumoral activity.
    Díez-Dacal B; Gayarre J; Gharbi S; Timms JF; Coderch C; Gago F; Pérez-Sala D
    Cancer Res; 2011 Jun; 71(12):4161-71. PubMed ID: 21507934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new nomenclature for the aldo-keto reductase superfamily.
    Jez JM; Flynn TG; Penning TM
    Biochem Pharmacol; 1997 Sep; 54(6):639-47. PubMed ID: 9310340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase II drug metabolizing enzymes.
    Jancova P; Anzenbacher P; Anzenbacherova E
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2010 Jun; 154(2):103-16. PubMed ID: 20668491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aldo-keto reductase 7A5 (AKR7A5) attenuates oxidative stress and reactive aldehyde toxicity in V79-4 cells.
    Li D; Ellis EM
    Toxicol In Vitro; 2014 Jun; 28(4):707-14. PubMed ID: 24590062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance.
    Hayes JD; Pulford DJ
    Crit Rev Biochem Mol Biol; 1995; 30(6):445-600. PubMed ID: 8770536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselectivity of Aldose Reductase in the Reduction of Glutathionyl-Hydroxynonanal Adduct.
    Balestri F; Barracco V; Renzone G; Tuccinardi T; Pomelli CS; Cappiello M; Lessi M; Rotondo R; Bellina F; Scaloni A; Mura U; Del Corso A; Moschini R
    Antioxidants (Basel); 2019 Oct; 8(10):. PubMed ID: 31652566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members.
    O'connor T; Ireland LS; Harrison DJ; Hayes JD
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):487-504. PubMed ID: 10510318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adduct Formation and Context Factors in Drug Hypersensitivity: Insight from Proteomic Studies.
    Gonzalez-Morena JM; Montanez MI; Aldini G; Sanchez-Gomez FJ; Perez-Sala D
    Curr Pharm Des; 2016; 22(45):6748-6758. PubMed ID: 27779087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophilic prostaglandins: identification of protein targets and opportunities for drug discovery.
    Pérez-Sala D
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S8. PubMed ID: 26461419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperation of liver cells in health and disease.
    Kmieć Z
    Adv Anat Embryol Cell Biol; 2001; 161():III-XIII, 1-151. PubMed ID: 11729749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detoxification Mechanism of α,β-Unsaturated Carbonyl Compounds in Cigarette Smoke Observed in Sheep Erythrocytes.
    Horiyama S; Hatai M; Ichikawa A; Yoshikawa N; Nakamura K; Kunitomo M
    Chem Pharm Bull (Tokyo); 2018; 66(7):721-726. PubMed ID: 29962455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification.
    Barski OA; Tipparaju SM; Bhatnagar A
    Drug Metab Rev; 2008; 40(4):553-624. PubMed ID: 18949601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology.
    Pastel E; Pointud JC; Martinez A; Lefrançois-Martinez AM
    Front Endocrinol (Lausanne); 2016; 7():97. PubMed ID: 27499746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclopentenone prostaglandins with dienone structure promote cross-linking of the chemoresistance-inducing enzyme glutathione transferase P1-1.
    Sánchez-Gómez FJ; Díez-Dacal B; Pajares MA; Llorca O; Pérez-Sala D
    Mol Pharmacol; 2010 Oct; 78(4):723-33. PubMed ID: 20631055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.