BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2754039)

  • 41. Postnatal development of cortical acetylcholinesterase-rich neurons in the rat brain: permanent and transient patterns.
    Geula C; Mesulam MM; Kuo CC; Tokuno H
    Exp Neurol; 1995 Aug; 134(2):157-78. PubMed ID: 7556536
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Choline acetyltransferase and acetylcholinesterase in canine spinal ganglia: increase of choline acetyltransferase activity following sciatic nerve lesion.
    Malatová Z; Longauer F; Marsala J
    J Hirnforsch; 1985; 26(6):683-8. PubMed ID: 4093596
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Substratum-induced modulation of acetylcholinesterase activity in cultured dorsal root ganglion neurons.
    Gupta JJ; Bigbee JW
    J Neurosci Res; 1992 Mar; 31(3):454-61. PubMed ID: 1640497
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Developmental maps of acetylcholinesterase and G4-antigen of the early chicken brain: long-distance tracts originate from AChE-producing cell bodies.
    Weikert T; Rathjen FG; Layer PG
    J Neurobiol; 1990 Apr; 21(3):482-98. PubMed ID: 2351964
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The development of acetylcholinesterase activity in the embryonic nervous system of the frog, Xenopus laevis.
    Moody SA; Stein DB
    Brain Res; 1988 Apr; 467(2):225-32. PubMed ID: 3378171
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic regulation of the cholinergic system in the spinal central nervous system.
    Rima M; Lattouf Y; Abi Younes M; Bullier E; Legendre P; Mangin JM; Hong E
    Sci Rep; 2020 Sep; 10(1):15338. PubMed ID: 32948826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of acetylcholinesterase (AChE) and aryl acylamidase (AAA) during early zebrafish embryogenesis.
    Allebrandt KV; Rajesh V; Layer PG
    Chem Biol Interact; 2005 Dec; 157-158():353-5. PubMed ID: 16425445
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adverse outcome pathways during zebrafish embryogenesis: a case study with paraoxon.
    Yozzo KL; McGee SP; Volz DC
    Aquat Toxicol; 2013 Jan; 126():346-54. PubMed ID: 23046524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of acetylcholinesterase in individual neurons in the leech central nervous system.
    Wallace BG; Gillon JW
    J Neurosci; 1982 Aug; 2(8):1108-18. PubMed ID: 7108585
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The development of longitudinal patterns in the rabbit cerebellum.
    Marani E; Epema A; Brown B; Tetteroo P; Voogd J
    Acta Histochem Suppl; 1986; 32():53-8. PubMed ID: 2422694
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proline-induced changes in acetylcholinesterase activity and gene expression in zebrafish brain: reversal by antipsychotic drugs.
    Savio LE; Vuaden FC; Kist LW; Pereira TC; Rosemberg DB; Bogo MR; Bonan CD; Wyse AT
    Neuroscience; 2013 Oct; 250():121-8. PubMed ID: 23867765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct evidence for an adhesive function in the noncholinergic role of acetylcholinesterase in neurite outgrowth.
    Sharma KV; Koenigsberger C; Brimijoin S; Bigbee JW
    J Neurosci Res; 2001 Jan; 63(2):165-75. PubMed ID: 11169626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Expression of the paternal genes for lactate dehydrogenase, glutamate dehydrogenase and acetylcholinesterase in the development of hybrid fish between species from the families of Cobitidae and Cyprinidae].
    Ivanenkov VV
    Ontogenez; 1976; 7(6):579-89. PubMed ID: 1028008
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acetylcholinesterase distribution in axotomized frog motoneurons.
    Sinicropi DV; Michels K; McIlwain DL
    J Neurochem; 1982 Apr; 38(4):1099-105. PubMed ID: 6977618
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single-cell analysis of somatotopic map formation in the zebrafish lateral line system.
    Sato A; Koshida S; Takeda H
    Dev Dyn; 2010 Jul; 239(7):2058-65. PubMed ID: 20549741
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of the multiple molecular forms of acetylcholinesterase in chick paravertebral sympathetic ganglia: an in vivo and in vitro study.
    Taylor P; Rieger F; Greene LA
    Brain Res; 1980 Jan; 182(2):383-96. PubMed ID: 7357392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Distribution of acetylcholinesterase activity in the digestive system of the gastropod molluscs Littorina littorea and Achatina fulica].
    Zaĭtseva OV; Kuznetsova TV
    Morfologiia; 2008; 133(1):55-9. PubMed ID: 19069417
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Zebrafish primary neurons initiate expression of the LIM homeodomain protein Isl-1 at the end of gastrulation.
    Korzh V; Edlund T; Thor S
    Development; 1993 Jun; 118(2):417-25. PubMed ID: 8223269
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The adhesive role of acetylcholinesterase (AChE): detection of AChE binding proteins in developing rat spinal cord.
    Bigbee JW; Sharma KV
    Neurochem Res; 2004 Nov; 29(11):2043-50. PubMed ID: 15662838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Appearance and localization of acetylcholinesterase in embryos of the leech Helobdella triserialis.
    Fitzpatrick-McElligott S; Stent GS
    J Neurosci; 1981 Aug; 1(8):901-7. PubMed ID: 7346594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.