BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 27540483)

  • 1. Metabolic requirements for cancer cell proliferation.
    Keibler MA; Wasylenko TM; Kelleher JK; Iliopoulos O; Vander Heiden MG; Stephanopoulos G
    Cancer Metab; 2016; 4():16. PubMed ID: 27540483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors.
    Varma A; Palsson BO
    J Theor Biol; 1993 Dec; 165(4):477-502. PubMed ID: 21322280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic plasticity maintains proliferation in pyruvate dehydrogenase deficient cells.
    Rajagopalan KN; Egnatchik RA; Calvaruso MA; Wasti AT; Padanad MS; Boroughs LK; Ko B; Hensley CT; Acar M; Hu Z; Jiang L; Pascual JM; Scaglioni PP; DeBerardinis RJ
    Cancer Metab; 2015; 3():7. PubMed ID: 26137220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale metabolic modelling common cofactors metabolism in microorganisms.
    Xu N; Ye C; Chen X; Liu J; Liu L
    J Biotechnol; 2017 Jun; 251():1-13. PubMed ID: 28385592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of flux through the citric acid cycle and the glyoxylate bypass in Escherichia coli.
    Holms WH
    Biochem Soc Symp; 1987; 54():17-31. PubMed ID: 3332993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Impact of Redox Cofactor Perturbations on the Formation of Aroma Compounds in Saccharomyces cerevisiae.
    Bloem A; Sanchez I; Dequin S; Camarasa C
    Appl Environ Microbiol; 2016 Jan; 82(1):174-83. PubMed ID: 26475113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism.
    Zielinski DC; Jamshidi N; Corbett AJ; Bordbar A; Thomas A; Palsson BO
    Sci Rep; 2017 Jan; 7():41241. PubMed ID: 28120890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometry analysis shows the biosynthetic pathways supported by pyruvate carboxylase in highly invasive breast cancer cells.
    Phannasil P; Ansari IH; El Azzouny M; Longacre MJ; Rattanapornsompong K; Burant CF; MacDonald MJ; Jitrapakdee S
    Biochim Biophys Acta Mol Basis Dis; 2017 Feb; 1863(2):537-551. PubMed ID: 27890529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect.
    Damiani C; Colombo R; Gaglio D; Mastroianni F; Pescini D; Westerhoff HV; Mauri G; Vanoni M; Alberghina L
    PLoS Comput Biol; 2017 Sep; 13(9):e1005758. PubMed ID: 28957320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Critical Role of Glutamine and Asparagine γ-Nitrogen in Nucleotide Biosynthesis in Cancer Cells Hijacked by an Oncogenic Virus.
    Zhu Y; Li T; Ramos da Silva S; Lee JJ; Lu C; Eoh H; Jung JU; Gao SJ
    mBio; 2017 Aug; 8(4):. PubMed ID: 28811348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Cancer-associated metabolic vulnerabilities by modeling multi-objective optimality in metabolism.
    Dai Z; Yang S; Xu L; Hu H; Liao K; Wang J; Wang Q; Gao S; Li B; Lai L
    Cell Commun Signal; 2019 Oct; 17(1):124. PubMed ID: 31601242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling.
    Armingol E; Tobar E; Cabrera R
    PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the hexosamine biosynthetic pathway in human tumor cells by multitargeted tandem mass spectrometry.
    Abdel Rahman AM; Ryczko M; Pawling J; Dennis JW
    ACS Chem Biol; 2013 Sep; 8(9):2053-62. PubMed ID: 23875632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Germline BRCA1 mutation reprograms breast epithelial cell metabolism towards mitochondrial-dependent biosynthesis: evidence for metformin-based "starvation" strategies in BRCA1 carriers.
    Cuyàs E; Fernández-Arroyo S; Alarcón T; Lupu R; Joven J; Menendez JA
    Oncotarget; 2016 Aug; 7(33):52974-52992. PubMed ID: 27259235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth energetics and metabolic fluxes in continuous cultures of Penicillium chrysogenum.
    Henriksen CM; Christensen LH; Nielsen J; Villadsen J
    J Biotechnol; 1996 Feb; 45(2):149-64. PubMed ID: 9147448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling biochemical aspects of energy metabolism in mammals.
    van Milgen J
    J Nutr; 2002 Oct; 132(10):3195-202. PubMed ID: 12368418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis.
    Frick O; Wittmann C
    Microb Cell Fact; 2005 Nov; 4():30. PubMed ID: 16269086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of storage synthesis in developing Brassica napus L. (oilseed rape) embryos: flux variability analysis in relation to ¹³C metabolic flux analysis.
    Hay J; Schwender J
    Plant J; 2011 Aug; 67(3):513-25. PubMed ID: 21501261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraint-Based Modeling Highlights Cell Energy, Redox Status and α-Ketoglutarate Availability as Metabolic Drivers for Anthocyanin Accumulation in Grape Cells Under Nitrogen Limitation.
    Soubeyrand E; Colombié S; Beauvoit B; Dai Z; Cluzet S; Hilbert G; Renaud C; Maneta-Peyret L; Dieuaide-Noubhani M; Mérillon JM; Gibon Y; Delrot S; Gomès E
    Front Plant Sci; 2018; 9():421. PubMed ID: 29868039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.